Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data

In this paper, we consider an interesting problem on adaptive Birnbaum-Saunders-power-exponential (BS-PE) kernel density estimation for nonnegative heavy-tailed (HT) data. Treating the variable bandwidths , of adaptive BS-PE kernel as parameters, we then propose a conjugate prior and estimate the &#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2015-08, Vol.42 (8), p.1645-1658
Hauptverfasser: Ziane, Y., Adjabi, S., Zougab, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider an interesting problem on adaptive Birnbaum-Saunders-power-exponential (BS-PE) kernel density estimation for nonnegative heavy-tailed (HT) data. Treating the variable bandwidths , of adaptive BS-PE kernel as parameters, we then propose a conjugate prior and estimate the 's by using the popular quadratic and entropy loss functions. Explicit formulas are obtained for the posterior and Bayes estimators. Comparison simulations with global unbiased cross-validation bandwidth selection technique were conducted under four HT distributions. Finally, two applications based on HT real data are presented and analyzed.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2015.1004626