Using repeated-prevalence data in multi-state modeling of renal replacement therapy
Multi-state models help predict future numbers of patients requiring specific treatments but these models require exhaustive incidence data. Deriving reliable predictions from repeated-prevalence data would be helpful. A new method to model the number of patients that switch between therapeutic moda...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2015-06, Vol.42 (6), p.1278-1290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-state models help predict future numbers of patients requiring specific treatments but these models require exhaustive incidence data. Deriving reliable predictions from repeated-prevalence data would be helpful. A new method to model the number of patients that switch between therapeutic modalities using repeated-prevalence data is presented and illustrated. The parameters and goodness of fit obtained with the new method and repeated-prevalence data were compared to those obtained with the classical method and incidence data. The multi-state model parameters' confidence intervals obtained with annually collected repeated-prevalence data were wider than those obtained with incidence data and six out of nine pairs of confidence intervals did not overlap. However, most parameters were of the same order of magnitude and the predicted patient distributions among various renal replacement therapies were similar regardless of the type of data used. In the absence of incidence data, a multi-state model can still be successfully built with annually collected repeated-prevalence data to predict the numbers of patients requiring specific treatments. This modeling technique can be extended to other chronic diseases. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2014.999648 |