Smoothing for small samples with model misspecification: Nonparametric and semiparametric concerns

Our goal is to find a regression technique that can be used in a small-sample situation with possible model misspecification. The development of a new bandwidth selector allows nonparametric regression (in conjunction with least squares) to be used in this small-sample problem, where nonparametric p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2002-09, Vol.29 (7), p.1023-1045
Hauptverfasser: Mays, James E., Birch, Jeffrey B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our goal is to find a regression technique that can be used in a small-sample situation with possible model misspecification. The development of a new bandwidth selector allows nonparametric regression (in conjunction with least squares) to be used in this small-sample problem, where nonparametric procedures have previously proven to be inadequate. Considered here are two new semiparametric (model-robust) regression techniques that combine parametric and nonparametric techniques when there is partial information present about the underlying model. A general overview is given of how typical concerns for bandwidth selection in nonparametric regression extend to the model-robust procedures. A new penalized PRESS criterion (with a graphical selection strategy for applications) is developed that overcomes these concerns and is able to maintain the beneficial mean squared error properties of the new model-robust methods. It is shown that this new selector outperforms standard and recently improved bandwidth selectors. Comparisons of the selectors are made via numerous generated data examples and a small simulation study.
ISSN:0266-4763
1360-0532
DOI:10.1080/0266476022000006720