Discrete approximation of a free discontinuity problem

We approximate by discrete Г-convergence a functional proposed by Mumford-Shah for a variational approach to image segmentation. Such a functional is first relaxed with a sequence of nonconvex functionals, which in turn, are dis-cretized by piecewise linear finite elements. Under a suitable relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1994-01, Vol.15 (3-4), p.201-224
Hauptverfasser: Bellettini, Giovanni, Coscia, Alessandra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We approximate by discrete Г-convergence a functional proposed by Mumford-Shah for a variational approach to image segmentation. Such a functional is first relaxed with a sequence of nonconvex functionals, which in turn, are dis-cretized by piecewise linear finite elements. Under a suitable relation between the relaxation parameter εand the meshsize h, the convergence of the discrete functionals and the compactness of any sequence of discrete minimizers are proved. The proof relies on the techniques of Г-convergence and on the properties of the Lagrange interpolation and Clement operators.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569408816562