Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods

Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1990-01, Vol.11 (9-10), p.851-872
Hauptverfasser: Ahues, Mario, Largillier, Alain
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 872
container_issue 9-10
container_start_page 851
container_title Numerical functional analysis and optimization
container_volume 11
creator Ahues, Mario
Largillier, Alain
description Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.
doi_str_mv 10.1080/01630569108816407
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630569108816407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_01630569108816407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c957-bfa0b2bc3b7aded74fc17d0f3f7c60fef2d2f512e4824a26dd10be070a67e5b83</originalsourceid><addsrcrecordid>eNp1kF9KAzEQh4MoWKsH8C0XWJ0ku5st-CLFf1AQpO_LJJm0kd1NSRalF_MCXswt9U18mhl-8w3Mx9i1gBsBDdyCqBVU9WIaGlGXoE_YTFRKFrKs9SmbHfJiWlDn7CLndwBQctHMmHnDfUdhsy2y3abvLxeGDSWeKQXK3MfEHXmyY_ggnndTk7Dj1FFPw5h59NzGfod25HFHCceYMg8DNzig3U4AWsqX7Mxjl-nqt87Z-vFhvXwuVq9PL8v7VWEXlS6MRzDSWGU0OnK69FZoB155bWvw5KWTvhKSykaWKGvnBBgCDVhrqkyj5kwcz9oUc07k210KPaZ9K6A9OGr_OJqYuyMThunVHj9j6lw7Tkpi8gkHG3Kr_sd_AEjWb80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods</title><source>Taylor &amp; Francis</source><creator>Ahues, Mario ; Largillier, Alain</creator><creatorcontrib>Ahues, Mario ; Largillier, Alain</creatorcontrib><description>Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630569108816407</identifier><language>eng</language><publisher>Marcel Dekker, Inc</publisher><ispartof>Numerical functional analysis and optimization, 1990-01, Vol.11 (9-10), p.851-872</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c957-bfa0b2bc3b7aded74fc17d0f3f7c60fef2d2f512e4824a26dd10be070a67e5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630569108816407$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630569108816407$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Ahues, Mario</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><title>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods</title><title>Numerical functional analysis and optimization</title><description>Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.</description><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kF9KAzEQh4MoWKsH8C0XWJ0ku5st-CLFf1AQpO_LJJm0kd1NSRalF_MCXswt9U18mhl-8w3Mx9i1gBsBDdyCqBVU9WIaGlGXoE_YTFRKFrKs9SmbHfJiWlDn7CLndwBQctHMmHnDfUdhsy2y3abvLxeGDSWeKQXK3MfEHXmyY_ggnndTk7Dj1FFPw5h59NzGfod25HFHCceYMg8DNzig3U4AWsqX7Mxjl-nqt87Z-vFhvXwuVq9PL8v7VWEXlS6MRzDSWGU0OnK69FZoB155bWvw5KWTvhKSykaWKGvnBBgCDVhrqkyj5kwcz9oUc07k210KPaZ9K6A9OGr_OJqYuyMThunVHj9j6lw7Tkpi8gkHG3Kr_sd_AEjWb80</recordid><startdate>19900101</startdate><enddate>19900101</enddate><creator>Ahues, Mario</creator><creator>Largillier, Alain</creator><general>Marcel Dekker, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900101</creationdate><title>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces</title><author>Ahues, Mario ; Largillier, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c957-bfa0b2bc3b7aded74fc17d0f3f7c60fef2d2f512e4824a26dd10be070a67e5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahues, Mario</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahues, Mario</au><au>Largillier, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>1990-01-01</date><risdate>1990</risdate><volume>11</volume><issue>9-10</issue><spage>851</spage><epage>872</epage><pages>851-872</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.</abstract><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630569108816407</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 1990-01, Vol.11 (9-10), p.851-872
issn 0163-0563
1532-2467
language eng
recordid cdi_crossref_primary_10_1080_01630569108816407
source Taylor & Francis
title Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh-schr%C3%B6dinger%20series%20for%20defective%20spectral%20elements%20of%20compact%20operators%20in%20banach%20spaces:%20Second%20Part:%20Numerical%20Comparison%20with%20Some%20Inexact%20Newton%20Methods&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Ahues,%20Mario&rft.date=1990-01-01&rft.volume=11&rft.issue=9-10&rft.spage=851&rft.epage=872&rft.pages=851-872&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630569108816407&rft_dat=%3Ccrossref_infor%3E10_1080_01630569108816407%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true