Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods
Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation metho...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 1990-01, Vol.11 (9-10), p.851-872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 872 |
---|---|
container_issue | 9-10 |
container_start_page | 851 |
container_title | Numerical functional analysis and optimization |
container_volume | 11 |
creator | Ahues, Mario Largillier, Alain |
description | Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal. |
doi_str_mv | 10.1080/01630569108816407 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630569108816407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_01630569108816407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c957-bfa0b2bc3b7aded74fc17d0f3f7c60fef2d2f512e4824a26dd10be070a67e5b83</originalsourceid><addsrcrecordid>eNp1kF9KAzEQh4MoWKsH8C0XWJ0ku5st-CLFf1AQpO_LJJm0kd1NSRalF_MCXswt9U18mhl-8w3Mx9i1gBsBDdyCqBVU9WIaGlGXoE_YTFRKFrKs9SmbHfJiWlDn7CLndwBQctHMmHnDfUdhsy2y3abvLxeGDSWeKQXK3MfEHXmyY_ggnndTk7Dj1FFPw5h59NzGfod25HFHCceYMg8DNzig3U4AWsqX7Mxjl-nqt87Z-vFhvXwuVq9PL8v7VWEXlS6MRzDSWGU0OnK69FZoB155bWvw5KWTvhKSykaWKGvnBBgCDVhrqkyj5kwcz9oUc07k210KPaZ9K6A9OGr_OJqYuyMThunVHj9j6lw7Tkpi8gkHG3Kr_sd_AEjWb80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods</title><source>Taylor & Francis</source><creator>Ahues, Mario ; Largillier, Alain</creator><creatorcontrib>Ahues, Mario ; Largillier, Alain</creatorcontrib><description>Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630569108816407</identifier><language>eng</language><publisher>Marcel Dekker, Inc</publisher><ispartof>Numerical functional analysis and optimization, 1990-01, Vol.11 (9-10), p.851-872</ispartof><rights>Copyright Taylor & Francis Group, LLC 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c957-bfa0b2bc3b7aded74fc17d0f3f7c60fef2d2f512e4824a26dd10be070a67e5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630569108816407$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630569108816407$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Ahues, Mario</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><title>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods</title><title>Numerical functional analysis and optimization</title><description>Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.</description><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kF9KAzEQh4MoWKsH8C0XWJ0ku5st-CLFf1AQpO_LJJm0kd1NSRalF_MCXswt9U18mhl-8w3Mx9i1gBsBDdyCqBVU9WIaGlGXoE_YTFRKFrKs9SmbHfJiWlDn7CLndwBQctHMmHnDfUdhsy2y3abvLxeGDSWeKQXK3MfEHXmyY_ggnndTk7Dj1FFPw5h59NzGfod25HFHCceYMg8DNzig3U4AWsqX7Mxjl-nqt87Z-vFhvXwuVq9PL8v7VWEXlS6MRzDSWGU0OnK69FZoB155bWvw5KWTvhKSykaWKGvnBBgCDVhrqkyj5kwcz9oUc07k210KPaZ9K6A9OGr_OJqYuyMThunVHj9j6lw7Tkpi8gkHG3Kr_sd_AEjWb80</recordid><startdate>19900101</startdate><enddate>19900101</enddate><creator>Ahues, Mario</creator><creator>Largillier, Alain</creator><general>Marcel Dekker, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900101</creationdate><title>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces</title><author>Ahues, Mario ; Largillier, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c957-bfa0b2bc3b7aded74fc17d0f3f7c60fef2d2f512e4824a26dd10be070a67e5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahues, Mario</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahues, Mario</au><au>Largillier, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>1990-01-01</date><risdate>1990</risdate><volume>11</volume><issue>9-10</issue><spage>851</spage><epage>872</epage><pages>851-872</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.</abstract><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630569108816407</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-0563 |
ispartof | Numerical functional analysis and optimization, 1990-01, Vol.11 (9-10), p.851-872 |
issn | 0163-0563 1532-2467 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01630569108816407 |
source | Taylor & Francis |
title | Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh-schr%C3%B6dinger%20series%20for%20defective%20spectral%20elements%20of%20compact%20operators%20in%20banach%20spaces:%20Second%20Part:%20Numerical%20Comparison%20with%20Some%20Inexact%20Newton%20Methods&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Ahues,%20Mario&rft.date=1990-01-01&rft.volume=11&rft.issue=9-10&rft.spage=851&rft.epage=872&rft.pages=851-872&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630569108816407&rft_dat=%3Ccrossref_infor%3E10_1080_01630569108816407%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |