Rayleigh-schrödinger series for defective spectral elements of compact operators in banach spaces: Second Part: Numerical Comparison with Some Inexact Newton Methods

Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1990-01, Vol.11 (9-10), p.851-872
Hauptverfasser: Ahues, Mario, Largillier, Alain
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical computation of Rayleigh-Schrödinger Series for maximal invariant sub-spaces is done for compact integral operators with defective eigenvalues. The series are applied to refine iteratively an approximate starting basis. The integral operators are discretized by different approximation methods which are known to be a strongly stable approximations at any nonzero eigenvalue. Rayleigh-Schrödinger Series are compared with three inexact Newton methods that perform the same goal.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569108816407