Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions
The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations o...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 2008-05, Vol.29 (5-6), p.590-611 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 611 |
---|---|
container_issue | 5-6 |
container_start_page | 590 |
container_title | Numerical functional analysis and optimization |
container_volume | 29 |
creator | Karatson, J |
description | The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators. |
doi_str_mv | 10.1080/01630560802099399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630560802099399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33590792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-7e6c7d180cf7fcda1568db84427afd05ce9cc82ce06106bdfbeb6b6a77ad5c513</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKsP4C4rd6PJpJNMxE0dtAoFi9X1kMlPjcwkNcmgfXunVFcFXd0L53z3Hg4A5xhdYlSiK4QpQQUd1hxxTjg_ACNckDzLJ5QdgtFWzwYDOQYnMb4jhEjOyxF4XvZrHVrrtAhwUc3gtF35YNNbF6_hctN1OgUr4UKEBBdBS--UTdY761ZQOAVvfe-UCBtY_SrxFBwZ0UZ99jPH4PX-7qV6yOZPs8dqOs8kYSxlTFPJFC6RNMxIJXBBS9WUk0nOhFGokJpLWeZSI4oRbZRpdEMbKhgTqpAFJmNwsbu7Dv6j1zHVnY1St61w2vexJqTgiPF8MOKdUQYfY9CmXgfbDaFrjOpte_VeewNzs2OsMz504tOHVtVJbFofTBBO2uHBXzj7F9-j6vSVyDf0M4kc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33590792</pqid></control><display><type>article</type><title>Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions</title><source>Taylor & Francis Journals Complete</source><creator>Karatson, J</creator><creatorcontrib>Karatson, J</creatorcontrib><description>The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630560802099399</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Conjugate gradient method ; Mesh independence ; Mixed boundary conditions ; Preconditioning ; Superlinear convergence ; Symmetric part</subject><ispartof>Numerical functional analysis and optimization, 2008-05, Vol.29 (5-6), p.590-611</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-7e6c7d180cf7fcda1568db84427afd05ce9cc82ce06106bdfbeb6b6a77ad5c513</citedby><cites>FETCH-LOGICAL-c377t-7e6c7d180cf7fcda1568db84427afd05ce9cc82ce06106bdfbeb6b6a77ad5c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630560802099399$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630560802099399$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Karatson, J</creatorcontrib><title>Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions</title><title>Numerical functional analysis and optimization</title><description>The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators.</description><subject>Conjugate gradient method</subject><subject>Mesh independence</subject><subject>Mixed boundary conditions</subject><subject>Preconditioning</subject><subject>Superlinear convergence</subject><subject>Symmetric part</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKsP4C4rd6PJpJNMxE0dtAoFi9X1kMlPjcwkNcmgfXunVFcFXd0L53z3Hg4A5xhdYlSiK4QpQQUd1hxxTjg_ACNckDzLJ5QdgtFWzwYDOQYnMb4jhEjOyxF4XvZrHVrrtAhwUc3gtF35YNNbF6_hctN1OgUr4UKEBBdBS--UTdY761ZQOAVvfe-UCBtY_SrxFBwZ0UZ99jPH4PX-7qV6yOZPs8dqOs8kYSxlTFPJFC6RNMxIJXBBS9WUk0nOhFGokJpLWeZSI4oRbZRpdEMbKhgTqpAFJmNwsbu7Dv6j1zHVnY1St61w2vexJqTgiPF8MOKdUQYfY9CmXgfbDaFrjOpte_VeewNzs2OsMz504tOHVtVJbFofTBBO2uHBXzj7F9-j6vSVyDf0M4kc</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Karatson, J</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080501</creationdate><title>Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions</title><author>Karatson, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-7e6c7d180cf7fcda1568db84427afd05ce9cc82ce06106bdfbeb6b6a77ad5c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Conjugate gradient method</topic><topic>Mesh independence</topic><topic>Mixed boundary conditions</topic><topic>Preconditioning</topic><topic>Superlinear convergence</topic><topic>Symmetric part</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karatson, J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karatson, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>29</volume><issue>5-6</issue><spage>590</spage><epage>611</epage><pages>590-611</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/01630560802099399</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-0563 |
ispartof | Numerical functional analysis and optimization, 2008-05, Vol.29 (5-6), p.590-611 |
issn | 0163-0563 1532-2467 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01630560802099399 |
source | Taylor & Francis Journals Complete |
subjects | Conjugate gradient method Mesh independence Mixed boundary conditions Preconditioning Superlinear convergence Symmetric part |
title | Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superlinear%20PCG%20Algorithms:%20Symmetric%20Part%20Preconditioning%20and%20Boundary%20Conditions&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Karatson,%20J&rft.date=2008-05-01&rft.volume=29&rft.issue=5-6&rft.spage=590&rft.epage=611&rft.pages=590-611&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630560802099399&rft_dat=%3Cproquest_cross%3E33590792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33590792&rft_id=info:pmid/&rfr_iscdi=true |