Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions

The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 2008-05, Vol.29 (5-6), p.590-611
1. Verfasser: Karatson, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630560802099399