Superlinear PCG Algorithms: Symmetric Part Preconditioning and Boundary Conditions
The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations o...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 2008-05, Vol.29 (5-6), p.590-611 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The superlinear convergence of the preconditioned CGM is studied for nonsymmetric elliptic problems (convection-diffusion equations) with mixed boundary conditions. A mesh independent rate of superlinear convergence is given when symmetric part preconditioning is applied to the FEM discretizations of the BVP. This is the extension of a similar result of the author for Dirichlet problems. The discussion relies on suitably developed Hilbert space theory for linear operators. |
---|---|
ISSN: | 0163-0563 1532-2467 |
DOI: | 10.1080/01630560802099399 |