Iterative Regularization and Generalized Discrepancy Principle for Monotone Operator Equations
In this paper, we propose two novel algorithms for solving a nonlinear ill-posed operator equation F(x) = f δ , ||f − f δ || ≤ δ, in a real Hilbert space H under the following basic assumption: The first algorithm is a combination of iteratively regularized Newton's scheme (IRNS) with a posteri...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 2007-01, Vol.28 (1-2), p.13-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose two novel algorithms for solving a nonlinear ill-posed operator equation F(x) = f
δ
, ||f − f
δ
|| ≤ δ, in a real Hilbert space H under the following basic assumption:
The first algorithm is a combination of iteratively regularized Newton's scheme (IRNS)
with a posteriori stopping rule
The second algorithm is a modified version of IRNS with simultaneous updates of the operator [F′(x
n
) + ϵ
n
I]
−1
:
combined with (
1
). A rigorous theoretical analysis of both methods is conducted. |
---|---|
ISSN: | 0163-0563 1532-2467 |
DOI: | 10.1080/01630560701190315 |