New Estimands for Experiments with Strong Interference
In experiments that study social phenomena, such as peer influence or herd immunity, the treatment of one unit may influence the outcomes of others. Such "interference between units" violates traditional approaches for causal inference, so that additional assumptions are often imposed to m...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2024-12, Vol.119 (548), p.2670-2679 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In experiments that study social phenomena, such as peer influence or herd immunity, the treatment of one unit may influence the outcomes of others. Such "interference between units" violates traditional approaches for causal inference, so that additional assumptions are often imposed to model or limit the underlying social mechanism. For binary outcomes, we propose new estimands that can be estimated without such assumptions, allowing for interval estimates that assume only the randomization of treatment. However, the causal implications of these estimands are more limited than those attainable under stronger assumptions. The estimand shows whether the treatment effects under the observed assignment varied systematically as a function of each unit's direct and indirect exposure to treatment, while also lower bounding the number of units affected.
Supplementary materials
for this article are available online. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2023.2271205 |