Semiparametric Inference for the Functional Cox Model

This article studies penalized semiparametric maximum partial likelihood estimation and hypothesis testing for the functional Cox model in analyzing right-censored data with both functional and scalar predictors. Deriving the asymptotic joint distribution of finite-dimensional and infinite-dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2021-07, Vol.116 (535), p.1319-1329
Hauptverfasser: Hao, Meiling, Liu, Kin-yat, Xu, Wei, Zhao, Xingqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article studies penalized semiparametric maximum partial likelihood estimation and hypothesis testing for the functional Cox model in analyzing right-censored data with both functional and scalar predictors. Deriving the asymptotic joint distribution of finite-dimensional and infinite-dimensional estimators is a very challenging theoretical problem due to the complexity of semiparametric models. For the problem, we construct the Sobolev space equipped with a special inner product and discover a new joint Bahadur representation of estimators of the unknown slope function and coefficients. Using this key tool, we establish the asymptotic joint normality of the proposed estimators and the weak convergence of the estimated slope function, and then construct local and global confidence intervals for an unknown slope function. Furthermore, we study a penalized partial likelihood ratio test, show that the test statistic enjoys the Wilks phenomenon, and also verify the optimality of the test. The theoretical results are examined through simulation studies, and a right-censored data example from the Improving Care of Acute Lung Injury Patients study is provided for illustration. Supplementary materials for this article are available online.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2019.1710155