Covariate Information Matrix for Sufficient Dimension Reduction

Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-10, Vol.114 (528), p.1752-1764
Hauptverfasser: Yao, Weixin, Nandy, Debmalya, Lindsay, Bruce G., Chiaromonte, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1764
container_issue 528
container_start_page 1752
container_title Journal of the American Statistical Association
container_volume 114
creator Yao, Weixin
Nandy, Debmalya
Lindsay, Bruce G.
Chiaromonte, Francesca
description Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in terms of their regression information. Compared to other popular SDR methods, CIM does not require distributional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of the CS. Results of simulations and real data applications demonstrate superior or competitive performance of CIM compared to that of some other SDR methods. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2018.1515080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2018_1515080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332355822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c0b6b511857ae83430ee08f6ea739141224e0cb72aa21421c30c3bf1683f87953</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_QVjwvDWTbDbpSaW-ChXBB3gL2TSBlHZTk6zaf2-WrVfnMjDzzQzzIXQOeAJY4EsMNYGKTScEg5gAA5arB2gEjPKS8OrjEI16puyhY3QS4wrn4EKM0NXMf6ngVDLFvLU-bFRyvi2eVArup8iF4rWz1mln2lTcuo1pY99_MctO9-QpOrJqHc3ZPo_R-_3d2-yxXDw_zGc3i1JTDqnUuKkbBiAYV0bQimJjsLC1UZxOoQJCKoN1w4lS-RUCmmJNGwu1oFbwKaNjdDHs3Qb_2ZmY5Mp3oc0nJaGUUMYEIZliA6WDjzEYK7fBbVTYScCydyX_XMneldy7ynPXw5wbHHz7sF7KpHZrH2xQrXZR0v9X_AKXN27k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332355822</pqid></control><display><type>article</type><title>Covariate Information Matrix for Sufficient Dimension Reduction</title><source>Access via Taylor &amp; Francis</source><creator>Yao, Weixin ; Nandy, Debmalya ; Lindsay, Bruce G. ; Chiaromonte, Francesca</creator><creatorcontrib>Yao, Weixin ; Nandy, Debmalya ; Lindsay, Bruce G. ; Chiaromonte, Francesca</creatorcontrib><description>Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in terms of their regression information. Compared to other popular SDR methods, CIM does not require distributional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of the CS. Results of simulations and real data applications demonstrate superior or competitive performance of CIM compared to that of some other SDR methods. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1515080</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bootstrap ; Central subspace ; Density ; Density information matrix ; Diagnostic systems ; Estimating techniques ; Fisher information matrix ; Nonparametric density estimation ; Nonparametric statistics ; Reduction ; Regression ; Regression analysis ; Statistical methods ; Statistics ; Sufficient dimension reduction</subject><ispartof>Journal of the American Statistical Association, 2019-10, Vol.114 (528), p.1752-1764</ispartof><rights>2019 American Statistical Association 2019</rights><rights>2019 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c0b6b511857ae83430ee08f6ea739141224e0cb72aa21421c30c3bf1683f87953</citedby><cites>FETCH-LOGICAL-c371t-c0b6b511857ae83430ee08f6ea739141224e0cb72aa21421c30c3bf1683f87953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1515080$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1515080$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Yao, Weixin</creatorcontrib><creatorcontrib>Nandy, Debmalya</creatorcontrib><creatorcontrib>Lindsay, Bruce G.</creatorcontrib><creatorcontrib>Chiaromonte, Francesca</creatorcontrib><title>Covariate Information Matrix for Sufficient Dimension Reduction</title><title>Journal of the American Statistical Association</title><description>Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in terms of their regression information. Compared to other popular SDR methods, CIM does not require distributional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of the CS. Results of simulations and real data applications demonstrate superior or competitive performance of CIM compared to that of some other SDR methods. Supplementary materials for this article are available online.</description><subject>Bootstrap</subject><subject>Central subspace</subject><subject>Density</subject><subject>Density information matrix</subject><subject>Diagnostic systems</subject><subject>Estimating techniques</subject><subject>Fisher information matrix</subject><subject>Nonparametric density estimation</subject><subject>Nonparametric statistics</subject><subject>Reduction</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sufficient dimension reduction</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_QVjwvDWTbDbpSaW-ChXBB3gL2TSBlHZTk6zaf2-WrVfnMjDzzQzzIXQOeAJY4EsMNYGKTScEg5gAA5arB2gEjPKS8OrjEI16puyhY3QS4wrn4EKM0NXMf6ngVDLFvLU-bFRyvi2eVArup8iF4rWz1mln2lTcuo1pY99_MctO9-QpOrJqHc3ZPo_R-_3d2-yxXDw_zGc3i1JTDqnUuKkbBiAYV0bQimJjsLC1UZxOoQJCKoN1w4lS-RUCmmJNGwu1oFbwKaNjdDHs3Qb_2ZmY5Mp3oc0nJaGUUMYEIZliA6WDjzEYK7fBbVTYScCydyX_XMneldy7ynPXw5wbHHz7sF7KpHZrH2xQrXZR0v9X_AKXN27k</recordid><startdate>20191002</startdate><enddate>20191002</enddate><creator>Yao, Weixin</creator><creator>Nandy, Debmalya</creator><creator>Lindsay, Bruce G.</creator><creator>Chiaromonte, Francesca</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20191002</creationdate><title>Covariate Information Matrix for Sufficient Dimension Reduction</title><author>Yao, Weixin ; Nandy, Debmalya ; Lindsay, Bruce G. ; Chiaromonte, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c0b6b511857ae83430ee08f6ea739141224e0cb72aa21421c30c3bf1683f87953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bootstrap</topic><topic>Central subspace</topic><topic>Density</topic><topic>Density information matrix</topic><topic>Diagnostic systems</topic><topic>Estimating techniques</topic><topic>Fisher information matrix</topic><topic>Nonparametric density estimation</topic><topic>Nonparametric statistics</topic><topic>Reduction</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sufficient dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Weixin</creatorcontrib><creatorcontrib>Nandy, Debmalya</creatorcontrib><creatorcontrib>Lindsay, Bruce G.</creatorcontrib><creatorcontrib>Chiaromonte, Francesca</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Weixin</au><au>Nandy, Debmalya</au><au>Lindsay, Bruce G.</au><au>Chiaromonte, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariate Information Matrix for Sufficient Dimension Reduction</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2019-10-02</date><risdate>2019</risdate><volume>114</volume><issue>528</issue><spage>1752</spage><epage>1764</epage><pages>1752-1764</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in terms of their regression information. Compared to other popular SDR methods, CIM does not require distributional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of the CS. Results of simulations and real data applications demonstrate superior or competitive performance of CIM compared to that of some other SDR methods. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2018.1515080</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2019-10, Vol.114 (528), p.1752-1764
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_2018_1515080
source Access via Taylor & Francis
subjects Bootstrap
Central subspace
Density
Density information matrix
Diagnostic systems
Estimating techniques
Fisher information matrix
Nonparametric density estimation
Nonparametric statistics
Reduction
Regression
Regression analysis
Statistical methods
Statistics
Sufficient dimension reduction
title Covariate Information Matrix for Sufficient Dimension Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariate%20Information%20Matrix%20for%20Sufficient%20Dimension%20Reduction&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Yao,%20Weixin&rft.date=2019-10-02&rft.volume=114&rft.issue=528&rft.spage=1752&rft.epage=1764&rft.pages=1752-1764&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1515080&rft_dat=%3Cproquest_cross%3E2332355822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332355822&rft_id=info:pmid/&rfr_iscdi=true