Covariate Information Matrix for Sufficient Dimension Reduction

Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-10, Vol.114 (528), p.1752-1764
Hauptverfasser: Yao, Weixin, Nandy, Debmalya, Lindsay, Bruce G., Chiaromonte, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building upon recent research on the applications of the density information matrix, we develop a tool for sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in terms of their regression information. Compared to other popular SDR methods, CIM does not require distributional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of the CS. Results of simulations and real data applications demonstrate superior or competitive performance of CIM compared to that of some other SDR methods. Supplementary materials for this article are available online.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2018.1515080