Bias Robust Estimation in Finite Populations Using Nonparametric Calibration
A Standard problem in sample survey inference is that of predicting the finite population total H of a function h(y) of a random variable Y. The model-based approach to this problem first defines a working model ξ for Y and then predicts H by estimating its expectation under ξ, conditional on the sa...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1993-03, Vol.88 (421), p.268-277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Standard problem in sample survey inference is that of predicting the finite population total H of a function h(y) of a random variable Y. The model-based approach to this problem first defines a working model ξ for Y and then predicts H by estimating its expectation under ξ, conditional on the sample values of Y. This approach leads to biased predictions if ξ is incorrect. We explore an automatic solution to this misspecification bias that uses nonparametric regression to define a robust (but inefficient) predictor of H, and then calibrates this predictor for its bias under ξ. An application to prediction of the finite population distribution function of a population of Australian beef farms is presented. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.1993.10594319 |