Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling
The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial....
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1990-12, Vol.85 (412), p.972-985 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 985 |
---|---|
container_issue | 412 |
container_start_page | 972 |
container_title | Journal of the American Statistical Association |
container_volume | 85 |
creator | Gelfand, Alan E. Hills, Susan E. Racine-Poon, Amy Smith, Adrian F. M. |
description | The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries. |
doi_str_mv | 10.1080/01621459.1990.10474968 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1990_10474968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2289594</jstor_id><sourcerecordid>2289594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi3USmxp_wLyAfUW8LfjI6V8rAT00CJxsyaOg4y89tbOCu2_J9GyiBu-jGw9847nQeiYklNKWnJGqGJUSHNKjZmfhBZGtQdoQSXXDdPi8QtazFAzU4foW63PZDq6bRfobhnjpo4FxpATzgP-BVtfAyS8TIMvPjmPQ8L3uawg4t8wAr7LvY8VP9SQnvB16LqK_8JqHafrd_R1gFj9j7d6hB6uLv9d3DS3f66XF-e3jRNUjI3pe2K4lt5x1xPuVCeoBmCsAw5UGe2JH4iWQwu9Zkp5paUznWO-l8YoyY_Qz13uuuT_G19HuwrV-Rgh-byplmvSKqn4BKod6EqutfjBrktYQdlaSuxsz-7t2dme3dubGk_eJkB1EIcCyYX63i0FpXLa4R17rmMuH8MZJ9oy1hppxISd77CQhtnkSy6xtyNsYy77aP7Jj14BCmyOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37086563</pqid></control><display><type>article</type><title>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Gelfand, Alan E. ; Hills, Susan E. ; Racine-Poon, Amy ; Smith, Adrian F. M.</creator><creatorcontrib>Gelfand, Alan E. ; Hills, Susan E. ; Racine-Poon, Amy ; Smith, Adrian F. M.</creatorcontrib><description>The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1990.10474968</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Applications and Case Studies ; Bayesian inference ; Data models ; Data sampling ; Datasets ; Density estimation ; Exact sciences and technology ; Hierarchical models ; Inference ; Marginalization ; Mathematics ; Missing data ; Nonlinear parameters ; Order-restricted inference ; Population growth rate ; Probability and statistics ; Sampling ; Sampling distributions ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Variance components</subject><ispartof>Journal of the American Statistical Association, 1990-12, Vol.85 (412), p.972-985</ispartof><rights>Copyright Taylor & Francis Group, LLC 1990</rights><rights>Copyright 1990 American Statistical Association</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</citedby><cites>FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2289594$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2289594$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5411509$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gelfand, Alan E.</creatorcontrib><creatorcontrib>Hills, Susan E.</creatorcontrib><creatorcontrib>Racine-Poon, Amy</creatorcontrib><creatorcontrib>Smith, Adrian F. M.</creatorcontrib><title>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</title><title>Journal of the American Statistical Association</title><description>The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.</description><subject>Applications and Case Studies</subject><subject>Bayesian inference</subject><subject>Data models</subject><subject>Data sampling</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Exact sciences and technology</subject><subject>Hierarchical models</subject><subject>Inference</subject><subject>Marginalization</subject><subject>Mathematics</subject><subject>Missing data</subject><subject>Nonlinear parameters</subject><subject>Order-restricted inference</subject><subject>Population growth rate</subject><subject>Probability and statistics</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Variance components</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi3USmxp_wLyAfUW8LfjI6V8rAT00CJxsyaOg4y89tbOCu2_J9GyiBu-jGw9847nQeiYklNKWnJGqGJUSHNKjZmfhBZGtQdoQSXXDdPi8QtazFAzU4foW63PZDq6bRfobhnjpo4FxpATzgP-BVtfAyS8TIMvPjmPQ8L3uawg4t8wAr7LvY8VP9SQnvB16LqK_8JqHafrd_R1gFj9j7d6hB6uLv9d3DS3f66XF-e3jRNUjI3pe2K4lt5x1xPuVCeoBmCsAw5UGe2JH4iWQwu9Zkp5paUznWO-l8YoyY_Qz13uuuT_G19HuwrV-Rgh-byplmvSKqn4BKod6EqutfjBrktYQdlaSuxsz-7t2dme3dubGk_eJkB1EIcCyYX63i0FpXLa4R17rmMuH8MZJ9oy1hppxISd77CQhtnkSy6xtyNsYy77aP7Jj14BCmyOfw</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Gelfand, Alan E.</creator><creator>Hills, Susan E.</creator><creator>Racine-Poon, Amy</creator><creator>Smith, Adrian F. M.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19901201</creationdate><title>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</title><author>Gelfand, Alan E. ; Hills, Susan E. ; Racine-Poon, Amy ; Smith, Adrian F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applications and Case Studies</topic><topic>Bayesian inference</topic><topic>Data models</topic><topic>Data sampling</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Exact sciences and technology</topic><topic>Hierarchical models</topic><topic>Inference</topic><topic>Marginalization</topic><topic>Mathematics</topic><topic>Missing data</topic><topic>Nonlinear parameters</topic><topic>Order-restricted inference</topic><topic>Population growth rate</topic><topic>Probability and statistics</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Variance components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelfand, Alan E.</creatorcontrib><creatorcontrib>Hills, Susan E.</creatorcontrib><creatorcontrib>Racine-Poon, Amy</creatorcontrib><creatorcontrib>Smith, Adrian F. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelfand, Alan E.</au><au>Hills, Susan E.</au><au>Racine-Poon, Amy</au><au>Smith, Adrian F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>85</volume><issue>412</issue><spage>972</spage><epage>985</epage><pages>972-985</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1990.10474968</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1990-12, Vol.85 (412), p.972-985 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_1990_10474968 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Applications and Case Studies Bayesian inference Data models Data sampling Datasets Density estimation Exact sciences and technology Hierarchical models Inference Marginalization Mathematics Missing data Nonlinear parameters Order-restricted inference Population growth rate Probability and statistics Sampling Sampling distributions Sampling theory, sample surveys Sciences and techniques of general use Statistical variance Statistics Variance components |
title | Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illustration%20of%20Bayesian%20Inference%20in%20Normal%20Data%20Models%20Using%20Gibbs%20Sampling&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Gelfand,%20Alan%20E.&rft.date=1990-12-01&rft.volume=85&rft.issue=412&rft.spage=972&rft.epage=985&rft.pages=972-985&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1990.10474968&rft_dat=%3Cjstor_cross%3E2289594%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37086563&rft_id=info:pmid/&rft_jstor_id=2289594&rfr_iscdi=true |