Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling

The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1990-12, Vol.85 (412), p.972-985
Hauptverfasser: Gelfand, Alan E., Hills, Susan E., Racine-Poon, Amy, Smith, Adrian F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 412
container_start_page 972
container_title Journal of the American Statistical Association
container_volume 85
creator Gelfand, Alan E.
Hills, Susan E.
Racine-Poon, Amy
Smith, Adrian F. M.
description The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.
doi_str_mv 10.1080/01621459.1990.10474968
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1990_10474968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2289594</jstor_id><sourcerecordid>2289594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi3USmxp_wLyAfUW8LfjI6V8rAT00CJxsyaOg4y89tbOCu2_J9GyiBu-jGw9847nQeiYklNKWnJGqGJUSHNKjZmfhBZGtQdoQSXXDdPi8QtazFAzU4foW63PZDq6bRfobhnjpo4FxpATzgP-BVtfAyS8TIMvPjmPQ8L3uawg4t8wAr7LvY8VP9SQnvB16LqK_8JqHafrd_R1gFj9j7d6hB6uLv9d3DS3f66XF-e3jRNUjI3pe2K4lt5x1xPuVCeoBmCsAw5UGe2JH4iWQwu9Zkp5paUznWO-l8YoyY_Qz13uuuT_G19HuwrV-Rgh-byplmvSKqn4BKod6EqutfjBrktYQdlaSuxsz-7t2dme3dubGk_eJkB1EIcCyYX63i0FpXLa4R17rmMuH8MZJ9oy1hppxISd77CQhtnkSy6xtyNsYy77aP7Jj14BCmyOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37086563</pqid></control><display><type>article</type><title>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Gelfand, Alan E. ; Hills, Susan E. ; Racine-Poon, Amy ; Smith, Adrian F. M.</creator><creatorcontrib>Gelfand, Alan E. ; Hills, Susan E. ; Racine-Poon, Amy ; Smith, Adrian F. M.</creatorcontrib><description>The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1990.10474968</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Applications and Case Studies ; Bayesian inference ; Data models ; Data sampling ; Datasets ; Density estimation ; Exact sciences and technology ; Hierarchical models ; Inference ; Marginalization ; Mathematics ; Missing data ; Nonlinear parameters ; Order-restricted inference ; Population growth rate ; Probability and statistics ; Sampling ; Sampling distributions ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Variance components</subject><ispartof>Journal of the American Statistical Association, 1990-12, Vol.85 (412), p.972-985</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><rights>Copyright 1990 American Statistical Association</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</citedby><cites>FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2289594$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2289594$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5411509$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gelfand, Alan E.</creatorcontrib><creatorcontrib>Hills, Susan E.</creatorcontrib><creatorcontrib>Racine-Poon, Amy</creatorcontrib><creatorcontrib>Smith, Adrian F. M.</creatorcontrib><title>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</title><title>Journal of the American Statistical Association</title><description>The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.</description><subject>Applications and Case Studies</subject><subject>Bayesian inference</subject><subject>Data models</subject><subject>Data sampling</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Exact sciences and technology</subject><subject>Hierarchical models</subject><subject>Inference</subject><subject>Marginalization</subject><subject>Mathematics</subject><subject>Missing data</subject><subject>Nonlinear parameters</subject><subject>Order-restricted inference</subject><subject>Population growth rate</subject><subject>Probability and statistics</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Variance components</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi3USmxp_wLyAfUW8LfjI6V8rAT00CJxsyaOg4y89tbOCu2_J9GyiBu-jGw9847nQeiYklNKWnJGqGJUSHNKjZmfhBZGtQdoQSXXDdPi8QtazFAzU4foW63PZDq6bRfobhnjpo4FxpATzgP-BVtfAyS8TIMvPjmPQ8L3uawg4t8wAr7LvY8VP9SQnvB16LqK_8JqHafrd_R1gFj9j7d6hB6uLv9d3DS3f66XF-e3jRNUjI3pe2K4lt5x1xPuVCeoBmCsAw5UGe2JH4iWQwu9Zkp5paUznWO-l8YoyY_Qz13uuuT_G19HuwrV-Rgh-byplmvSKqn4BKod6EqutfjBrktYQdlaSuxsz-7t2dme3dubGk_eJkB1EIcCyYX63i0FpXLa4R17rmMuH8MZJ9oy1hppxISd77CQhtnkSy6xtyNsYy77aP7Jj14BCmyOfw</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Gelfand, Alan E.</creator><creator>Hills, Susan E.</creator><creator>Racine-Poon, Amy</creator><creator>Smith, Adrian F. M.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19901201</creationdate><title>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</title><author>Gelfand, Alan E. ; Hills, Susan E. ; Racine-Poon, Amy ; Smith, Adrian F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-9dd09375ec3cd03c6b417aa22ba3a1697e0ef075f8ad7266e675c9bc2ed599653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applications and Case Studies</topic><topic>Bayesian inference</topic><topic>Data models</topic><topic>Data sampling</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Exact sciences and technology</topic><topic>Hierarchical models</topic><topic>Inference</topic><topic>Marginalization</topic><topic>Mathematics</topic><topic>Missing data</topic><topic>Nonlinear parameters</topic><topic>Order-restricted inference</topic><topic>Population growth rate</topic><topic>Probability and statistics</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Variance components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelfand, Alan E.</creatorcontrib><creatorcontrib>Hills, Susan E.</creatorcontrib><creatorcontrib>Racine-Poon, Amy</creatorcontrib><creatorcontrib>Smith, Adrian F. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelfand, Alan E.</au><au>Hills, Susan E.</au><au>Racine-Poon, Amy</au><au>Smith, Adrian F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>85</volume><issue>412</issue><spage>972</spage><epage>985</epage><pages>972-985</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1990.10474968</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1990-12, Vol.85 (412), p.972-985
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_1990_10474968
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Applications and Case Studies
Bayesian inference
Data models
Data sampling
Datasets
Density estimation
Exact sciences and technology
Hierarchical models
Inference
Marginalization
Mathematics
Missing data
Nonlinear parameters
Order-restricted inference
Population growth rate
Probability and statistics
Sampling
Sampling distributions
Sampling theory, sample surveys
Sciences and techniques of general use
Statistical variance
Statistics
Variance components
title Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illustration%20of%20Bayesian%20Inference%20in%20Normal%20Data%20Models%20Using%20Gibbs%20Sampling&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Gelfand,%20Alan%20E.&rft.date=1990-12-01&rft.volume=85&rft.issue=412&rft.spage=972&rft.epage=985&rft.pages=972-985&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1990.10474968&rft_dat=%3Cjstor_cross%3E2289594%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37086563&rft_id=info:pmid/&rft_jstor_id=2289594&rfr_iscdi=true