Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling
The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial....
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1990-12, Vol.85 (412), p.972-985 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.1990.10474968 |