Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling

The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1990-12, Vol.85 (412), p.972-985
Hauptverfasser: Gelfand, Alan E., Hills, Susan E., Racine-Poon, Amy, Smith, Adrian F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior and predictive densities is reviewed and illustrated with a range of normal data models, including variance components, unordered and ordered means, hierarchical growth curves, and missing data in a crossover trial. In all cases the approach is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.1990.10474968