Multiple Comparisons with the Best Treatment

Let π 1 , π 2 , ..., π k be k ≥ 2 sources of observations (treatments, populations) and suppose the "goodness" of treatment π i is characterized by the size of an unknown real-valued parameter θ i . Let θ [k] = max 1≤i≤k θ i . If π i is preferred to π j when θ i > θ j , the parameters δ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1983-12, Vol.78 (384), p.965-971
Hauptverfasser: Edwards, Donald G., Hsu, Jason C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let π 1 , π 2 , ..., π k be k ≥ 2 sources of observations (treatments, populations) and suppose the "goodness" of treatment π i is characterized by the size of an unknown real-valued parameter θ i . Let θ [k] = max 1≤i≤k θ i . If π i is preferred to π j when θ i > θ j , the parameters δ i = θ [k] - θ i , i = 1, 2, ..., k reflect in an inverse sense the "goodness" of each treatment relative to the "best" treatment. A general technique for obtaining simultaneous confidence intervals on the δ i is demonstrated with several examples. This technique can be applied in any setting where comparison-with-control intervals can be computed regarding any π j as the control. These results have special importance in ranking and selection problems in that the process of generating upper bounds on the δ i generates traditional confidence statements of both the indifference zone and the subset selection schools, simultaneously, as established by Hsu (1981).
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.1983.10477047