Optimal smoothing parameters for multivariate fized and adaptive kernel methods

Except in special cases optimum smoothing parameters of kernel methods are difficult to obtain for small samples, and large sample results are often used. Simulation is used to obtain finite sample optimum smoothing parameters and mean integrated square errors for the bivariate normal density. For t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation 1989-05, Vol.32 (1-2), p.45-57
1. Verfasser: Worton, Bruce J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Except in special cases optimum smoothing parameters of kernel methods are difficult to obtain for small samples, and large sample results are often used. Simulation is used to obtain finite sample optimum smoothing parameters and mean integrated square errors for the bivariate normal density. For this example, comparison is made of finite and asymptotic results, and of fixed and adaptive kernel methods. Further comparisons are made of fixed and adaptive methods by considering four other different types of density. Finally, some examples are given.
ISSN:0094-9655
1563-5163
DOI:10.1080/00949658908811152