On the global structure of regular orders of dimension two

Let O be a regular domain of dimension two with field of fractions K. λ is an O-order in a separable K-algebra A. λ is said to be endo-regular (semi-endo-regular), if End λ ;(M) has global dimension two for every finitely generated (indecomposable) Cohen Macaulay-module M. We first show that these c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in algebra 1997-01, Vol.25 (1), p.1-9
Hauptverfasser: Drozd, Yu. A., Roggenkamp, K. W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let O be a regular domain of dimension two with field of fractions K. λ is an O-order in a separable K-algebra A. λ is said to be endo-regular (semi-endo-regular), if End λ ;(M) has global dimension two for every finitely generated (indecomposable) Cohen Macaulay-module M. We first show that these conditions are inherited by the localizations and completions at the maximal ideals in O. For endo-regular orders the converse also holds, and we give a complete description of them. For the semi-endo-regular orders we give a description in the complete situation. Globally we give examples, based on algebraic geometry, which show that the converse implications are not true.
ISSN:0092-7872
1532-4125
DOI:10.1080/00927879708825835