On the global structure of regular orders of dimension two
Let O be a regular domain of dimension two with field of fractions K. λ is an O-order in a separable K-algebra A. λ is said to be endo-regular (semi-endo-regular), if End λ ;(M) has global dimension two for every finitely generated (indecomposable) Cohen Macaulay-module M. We first show that these c...
Gespeichert in:
Veröffentlicht in: | Communications in algebra 1997-01, Vol.25 (1), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let O be a regular domain of dimension two with field of fractions K. λ is an O-order in a separable K-algebra A. λ is said to be endo-regular (semi-endo-regular), if End
λ
;(M) has global dimension two for every finitely generated (indecomposable) Cohen Macaulay-module M. We first show that these conditions are inherited by the localizations and completions at the maximal ideals in O. For endo-regular orders the converse also holds, and we give a complete description of them. For the semi-endo-regular orders we give a description in the complete situation. Globally we give examples, based on algebraic geometry, which show that the converse implications are not true. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927879708825835 |