Minimal characters of the finite classical groups

Let G(q) be a finite simple group of Lie type over a finite field of order q and d(G(q)) the minimal degree of faithful projective complex representations of G(q). For the case G(q) is a classical group we deter-mine the number of projective complex characters of G(q) of degree d(G(q)). In several c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in algebra 1996-01, Vol.24 (6), p.2093-2167
Hauptverfasser: Tiep, Pham Huu, Zalesskii, Alexander E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G(q) be a finite simple group of Lie type over a finite field of order q and d(G(q)) the minimal degree of faithful projective complex representations of G(q). For the case G(q) is a classical group we deter-mine the number of projective complex characters of G(q) of degree d(G(q)). In several cases we also determine the projective complex characters of the second and the third lowest degrees. As a corollary of these results we deduce the classification of quasi-simple irreducible complex linear groups of degree at most 2r r a prime divisor of the group order.
ISSN:0092-7872
1532-4125
DOI:10.1080/00927879608825690