Quasi-Monte Carlo sampling method for simulation-based dynamic probabilistic risk assessment of nuclear power plants

Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear science and technology 2022-03, Vol.59 (3), p.357-367
Hauptverfasser: Kubo, Kotaro, Jang, Sunghyon, Takashi, Takata, Yamaguchi, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a station blackout sequence in a boiling water reactor and compared each method. The result indicated that quasi-Monte Carlo sampling method handles the uncertainties most effectively in the assumed scenario.
ISSN:0022-3131
1881-1248
DOI:10.1080/00223131.2021.1971119