Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver

A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic research 2020-09, Vol.58 (5), p.738-754
Hauptverfasser: Hodges, Ben R., Liu, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 5
container_start_page 738
container_title Journal of hydraulic research
container_volume 58
creator Hodges, Ben R.
Liu, Frank
description A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpolation approach provides transition between 1st-order upwind and 2nd-order central interpolation schemes for supercritical and subcritical flow, respectively. This interpolation meets a proposed "no-neighbour" criterion for simplicity in future parallel implementation. Tests with a highly-resolved transitional flow and a coarsely-resolved natural channel show that the method is stable and accurate when applied with a flowrate damping algorithm that limits propagation of energy down to subgrid scales.
doi_str_mv 10.1080/00221686.2019.1671510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00221686_2019_1671510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446958486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-368bd2cf29eceb95a05a1156b9dae804ba428fbc867cfde54dadac03d38d68023</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKfYTuI6O1B5SpVYUNhaEz_AVWIXOy0qX0-ilC2r0WjuvTNzELqkZEaJINeEMEa54DNGaDWjfE5LSo7QhApaZIzMq2M0GTTZIDpFZymt-5bzik9QvXKtSQoag53vTNyEBjoXPAavsQ-ZN-7jsw7biLVLKprO_YxzGyIGTO-wdd51JtuFZtsa_Ap9TPZuPPgOp9DsTDxHJxaaZC4OdYreHu5Xi6ds-fL4vLhdZirPRZflXNSaKcsqo0xdlUBKoLTkdaXBCFLUUDBhayX4XFltykKDBkVynQvNBWH5FF2NuZsYvrYmdXLd3-37lZIVBa9KUQjeq8pRpWJIKRorN9G1EPeSEjnglH845YBTHnD2vpvR53z_egvfITZadrBvQrQRvHJJ5v9H_AJW0H3H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446958486</pqid></control><display><type>article</type><title>Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Hodges, Ben R. ; Liu, Frank</creator><creatorcontrib>Hodges, Ben R. ; Liu, Frank</creatorcontrib><description>A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpolation approach provides transition between 1st-order upwind and 2nd-order central interpolation schemes for supercritical and subcritical flow, respectively. This interpolation meets a proposed "no-neighbour" criterion for simplicity in future parallel implementation. Tests with a highly-resolved transitional flow and a coarsely-resolved natural channel show that the method is stable and accurate when applied with a flowrate damping algorithm that limits propagation of energy down to subgrid scales.</description><identifier>ISSN: 0022-1686</identifier><identifier>EISSN: 1814-2079</identifier><identifier>DOI: 10.1080/00221686.2019.1671510</identifier><language>eng</language><publisher>Madrid: Taylor &amp; Francis</publisher><subject>Algorithms ; Channel flow ; Damping ; Finite volume method ; Flow rates ; hydraulic jumps ; Interpolation ; Mathematical models ; Model testing ; Numerical methods ; one-dimensional models ; Open channel flow ; Saint-Venant equations ; shallow flows ; streams and rivers ; Subcritical flow ; Time ; Tranquil flow</subject><ispartof>Journal of hydraulic research, 2020-09, Vol.58 (5), p.738-754</ispartof><rights>2019 International Association for Hydro-Environment Engineering and Research 2019</rights><rights>2019 International Association for Hydro-Environment Engineering and Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-368bd2cf29eceb95a05a1156b9dae804ba428fbc867cfde54dadac03d38d68023</citedby><cites>FETCH-LOGICAL-c338t-368bd2cf29eceb95a05a1156b9dae804ba428fbc867cfde54dadac03d38d68023</cites><orcidid>0000-0001-6615-0739 ; 0000-0002-2007-1717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00221686.2019.1671510$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00221686.2019.1671510$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,59632,60421</link.rule.ids></links><search><creatorcontrib>Hodges, Ben R.</creatorcontrib><creatorcontrib>Liu, Frank</creatorcontrib><title>Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver</title><title>Journal of hydraulic research</title><description>A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpolation approach provides transition between 1st-order upwind and 2nd-order central interpolation schemes for supercritical and subcritical flow, respectively. This interpolation meets a proposed "no-neighbour" criterion for simplicity in future parallel implementation. Tests with a highly-resolved transitional flow and a coarsely-resolved natural channel show that the method is stable and accurate when applied with a flowrate damping algorithm that limits propagation of energy down to subgrid scales.</description><subject>Algorithms</subject><subject>Channel flow</subject><subject>Damping</subject><subject>Finite volume method</subject><subject>Flow rates</subject><subject>hydraulic jumps</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Numerical methods</subject><subject>one-dimensional models</subject><subject>Open channel flow</subject><subject>Saint-Venant equations</subject><subject>shallow flows</subject><subject>streams and rivers</subject><subject>Subcritical flow</subject><subject>Time</subject><subject>Tranquil flow</subject><issn>0022-1686</issn><issn>1814-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKfYTuI6O1B5SpVYUNhaEz_AVWIXOy0qX0-ilC2r0WjuvTNzELqkZEaJINeEMEa54DNGaDWjfE5LSo7QhApaZIzMq2M0GTTZIDpFZymt-5bzik9QvXKtSQoag53vTNyEBjoXPAavsQ-ZN-7jsw7biLVLKprO_YxzGyIGTO-wdd51JtuFZtsa_Ap9TPZuPPgOp9DsTDxHJxaaZC4OdYreHu5Xi6ds-fL4vLhdZirPRZflXNSaKcsqo0xdlUBKoLTkdaXBCFLUUDBhayX4XFltykKDBkVynQvNBWH5FF2NuZsYvrYmdXLd3-37lZIVBa9KUQjeq8pRpWJIKRorN9G1EPeSEjnglH845YBTHnD2vpvR53z_egvfITZadrBvQrQRvHJJ5v9H_AJW0H3H</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Hodges, Ben R.</creator><creator>Liu, Frank</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6615-0739</orcidid><orcidid>https://orcid.org/0000-0002-2007-1717</orcidid></search><sort><creationdate>20200918</creationdate><title>Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver</title><author>Hodges, Ben R. ; Liu, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-368bd2cf29eceb95a05a1156b9dae804ba428fbc867cfde54dadac03d38d68023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Channel flow</topic><topic>Damping</topic><topic>Finite volume method</topic><topic>Flow rates</topic><topic>hydraulic jumps</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Numerical methods</topic><topic>one-dimensional models</topic><topic>Open channel flow</topic><topic>Saint-Venant equations</topic><topic>shallow flows</topic><topic>streams and rivers</topic><topic>Subcritical flow</topic><topic>Time</topic><topic>Tranquil flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodges, Ben R.</creatorcontrib><creatorcontrib>Liu, Frank</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydraulic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodges, Ben R.</au><au>Liu, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver</atitle><jtitle>Journal of hydraulic research</jtitle><date>2020-09-18</date><risdate>2020</risdate><volume>58</volume><issue>5</issue><spage>738</spage><epage>754</epage><pages>738-754</pages><issn>0022-1686</issn><eissn>1814-2079</eissn><abstract>A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpolation approach provides transition between 1st-order upwind and 2nd-order central interpolation schemes for supercritical and subcritical flow, respectively. This interpolation meets a proposed "no-neighbour" criterion for simplicity in future parallel implementation. Tests with a highly-resolved transitional flow and a coarsely-resolved natural channel show that the method is stable and accurate when applied with a flowrate damping algorithm that limits propagation of energy down to subgrid scales.</abstract><cop>Madrid</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00221686.2019.1671510</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6615-0739</orcidid><orcidid>https://orcid.org/0000-0002-2007-1717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1686
ispartof Journal of hydraulic research, 2020-09, Vol.58 (5), p.738-754
issn 0022-1686
1814-2079
language eng
recordid cdi_crossref_primary_10_1080_00221686_2019_1671510
source Taylor & Francis:Master (3349 titles)
subjects Algorithms
Channel flow
Damping
Finite volume method
Flow rates
hydraulic jumps
Interpolation
Mathematical models
Model testing
Numerical methods
one-dimensional models
Open channel flow
Saint-Venant equations
shallow flows
streams and rivers
Subcritical flow
Time
Tranquil flow
title Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timescale%20interpolation%20and%20no-neighbour%20discretization%20for%20a%201D%20finite-volume%20Saint-Venant%20solver&rft.jtitle=Journal%20of%20hydraulic%20research&rft.au=Hodges,%20Ben%20R.&rft.date=2020-09-18&rft.volume=58&rft.issue=5&rft.spage=738&rft.epage=754&rft.pages=738-754&rft.issn=0022-1686&rft.eissn=1814-2079&rft_id=info:doi/10.1080/00221686.2019.1671510&rft_dat=%3Cproquest_cross%3E2446958486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446958486&rft_id=info:pmid/&rfr_iscdi=true