Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver

A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic research 2020-09, Vol.58 (5), p.738-754
Hauptverfasser: Hodges, Ben R., Liu, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new finite-volume numerical method for the one-dimensional (1D) Saint-Venant equations for unsteady open-channel flow is developed and tested. The model uses a recently-developed conservative finite-volume formulation that is inherently well-balanced for natural channels. A new timescale interpolation approach provides transition between 1st-order upwind and 2nd-order central interpolation schemes for supercritical and subcritical flow, respectively. This interpolation meets a proposed "no-neighbour" criterion for simplicity in future parallel implementation. Tests with a highly-resolved transitional flow and a coarsely-resolved natural channel show that the method is stable and accurate when applied with a flowrate damping algorithm that limits propagation of energy down to subgrid scales.
ISSN:0022-1686
1814-2079
DOI:10.1080/00221686.2019.1671510