A study of violent sloshing wave impacts using an improved SPH method
The flip-through phenomenon has been observed in several conditions characterized by a steep wave approaching a vertical wall (Peregrine 2003). One of the cases where this phenomenon has been observed and studied experimentally is the sloshing in a partially filled tank. This case has been described...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic research 2010-01, Vol.48 (sup1), p.94-104 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The flip-through phenomenon has been observed in several conditions characterized by a steep wave approaching a vertical wall (Peregrine 2003). One of the cases where this phenomenon has been observed and studied experimentally is the sloshing in a partially filled tank. This case has been described in Lugni et al. (2006) and in Faltinsen and Timoka (2009). Those experiments detail the features of the flip-through dynamics with an ad hoc distributions of miniaturized pressure sensors and with the records of a fast video-camera. Here, the same flow conditions have been reproduced numerically with an improved SPH method (cSPH), i.e. with MLS integral interpolators (Fries and Matthies 2003). This allows to solve the Euler equations in the case of free surfaces impacting at a wall. The extremely intense local features of the phenomenon highlight the capabilities and limits of the numerical algorithms proposed. |
---|---|
ISSN: | 0022-1686 1814-2079 |
DOI: | 10.1080/00221686.2010.9641250 |