Minimum channel length for roll-wave generation

The initial phase of roll-wave development is investigated by means of spatial linear stability analysis using the St. Venant equations, subject to a pointwise time-varying oscillating disturbance. The predicted spatial growth is compared with both Vedernikov's results and those computed with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic research 2008-01, Vol.46 (1), p.73-79
Hauptverfasser: Di Cristo, C., Iervolino, M., Vacca, A., Zanuttigh, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The initial phase of roll-wave development is investigated by means of spatial linear stability analysis using the St. Venant equations, subject to a pointwise time-varying oscillating disturbance. The predicted spatial growth is compared with both Vedernikov's results and those computed with a fully non-linear model. It is shown that for large values of the channel slope Vedernikov's theory systematically overpredicts the roll waves spatial growth rate, whereas the present analysis yields significant improvements. A modification of Montuori's criterion for the minimum channel length prediction is finally proposed, which agrees with available experimental data independently of the channel slope.
ISSN:0022-1686
1814-2079
DOI:10.1080/00221686.2008.9521844