Descriptor Kalman estimators

A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of systems science 1999, Vol.30 (11), p.1205-1212
Hauptverfasser: Deng, Zi-Li, Liu, Yu-Mei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1212
container_issue 11
container_start_page 1205
container_title International journal of systems science
container_volume 30
creator Deng, Zi-Li
Liu, Yu-Mei
description A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-noise estimators. The new algorithms of steady-state descriptor Kalman estimators gains are given. The solution of the Riccati equation is avoided. To ensure the asymptotic stability of descriptor Kalman estimators with respect to the initial values of innovation process, formulae for selecting their initial values are given. A simulation example shows the usefulness of the proposed results.
doi_str_mv 10.1080/002077299291679
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_002077299291679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_002077299291679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8c4c064dda189e9cbc04ec130bd1ffd0f61e84b5151f3f2e01e82625947059553</originalsourceid><addsrcrecordid>eNqFj81LAzEQxYMouFbPXjz0H1g7k6_deJNqtbTgRc8hm01gZT9KEtD-96bUU0E8DTOP33vzCLlFuEeoYQFAoaqoUlShrNQZKZBLXgqG6pwUB7XMMl6Sqxg_AUAICgW5e3LRhm6XpjDfmH4w49zF1A0mH-I1ufCmj-7md87Ix-r5fflabt9e1svHbWkZk6msLbcgedsarJVTtrHAnUUGTYvet-Alupo3AgV65qmDvFJJheIVCCUEm5HF0deGKcbgvN6F_ELYawR9KKdPymVCHIlu9FMYzNcU-lYns--n4IMZbRdPGZ2-U-Ye_uXYX6E_NYVkpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Descriptor Kalman estimators</title><source>Taylor &amp; Francis</source><creator>Deng, Zi-Li ; Liu, Yu-Mei</creator><creatorcontrib>Deng, Zi-Li ; Liu, Yu-Mei</creatorcontrib><description>A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-noise estimators. The new algorithms of steady-state descriptor Kalman estimators gains are given. The solution of the Riccati equation is avoided. To ensure the asymptotic stability of descriptor Kalman estimators with respect to the initial values of innovation process, formulae for selecting their initial values are given. A simulation example shows the usefulness of the proposed results.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/002077299291679</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><ispartof>International journal of systems science, 1999, Vol.30 (11), p.1205-1212</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8c4c064dda189e9cbc04ec130bd1ffd0f61e84b5151f3f2e01e82625947059553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/002077299291679$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/002077299291679$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Deng, Zi-Li</creatorcontrib><creatorcontrib>Liu, Yu-Mei</creatorcontrib><title>Descriptor Kalman estimators</title><title>International journal of systems science</title><description>A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-noise estimators. The new algorithms of steady-state descriptor Kalman estimators gains are given. The solution of the Riccati equation is avoided. To ensure the asymptotic stability of descriptor Kalman estimators with respect to the initial values of innovation process, formulae for selecting their initial values are given. A simulation example shows the usefulness of the proposed results.</description><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFj81LAzEQxYMouFbPXjz0H1g7k6_deJNqtbTgRc8hm01gZT9KEtD-96bUU0E8DTOP33vzCLlFuEeoYQFAoaqoUlShrNQZKZBLXgqG6pwUB7XMMl6Sqxg_AUAICgW5e3LRhm6XpjDfmH4w49zF1A0mH-I1ufCmj-7md87Ix-r5fflabt9e1svHbWkZk6msLbcgedsarJVTtrHAnUUGTYvet-Alupo3AgV65qmDvFJJheIVCCUEm5HF0deGKcbgvN6F_ELYawR9KKdPymVCHIlu9FMYzNcU-lYns--n4IMZbRdPGZ2-U-Ye_uXYX6E_NYVkpg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Deng, Zi-Li</creator><creator>Liu, Yu-Mei</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1999</creationdate><title>Descriptor Kalman estimators</title><author>Deng, Zi-Li ; Liu, Yu-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8c4c064dda189e9cbc04ec130bd1ffd0f61e84b5151f3f2e01e82625947059553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zi-Li</creatorcontrib><creatorcontrib>Liu, Yu-Mei</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zi-Li</au><au>Liu, Yu-Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Descriptor Kalman estimators</atitle><jtitle>International journal of systems science</jtitle><date>1999</date><risdate>1999</risdate><volume>30</volume><issue>11</issue><spage>1205</spage><epage>1212</epage><pages>1205-1212</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-noise estimators. The new algorithms of steady-state descriptor Kalman estimators gains are given. The solution of the Riccati equation is avoided. To ensure the asymptotic stability of descriptor Kalman estimators with respect to the initial values of innovation process, formulae for selecting their initial values are given. A simulation example shows the usefulness of the proposed results.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/002077299291679</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7721
ispartof International journal of systems science, 1999, Vol.30 (11), p.1205-1212
issn 0020-7721
1464-5319
language eng
recordid cdi_crossref_primary_10_1080_002077299291679
source Taylor & Francis
title Descriptor Kalman estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Descriptor%20Kalman%20estimators&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Deng,%20Zi-Li&rft.date=1999&rft.volume=30&rft.issue=11&rft.spage=1205&rft.epage=1212&rft.pages=1205-1212&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/002077299291679&rft_dat=%3Ccrossref_infor%3E10_1080_002077299291679%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true