Descriptor Kalman estimators

A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of systems science 1999, Vol.30 (11), p.1205-1212
Hauptverfasser: Deng, Zi-Li, Liu, Yu-Mei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators are presented on the basis of the autoregressive moving-average innovation model and white-noise estimators. The new algorithms of steady-state descriptor Kalman estimators gains are given. The solution of the Riccati equation is avoided. To ensure the asymptotic stability of descriptor Kalman estimators with respect to the initial values of innovation process, formulae for selecting their initial values are given. A simulation example shows the usefulness of the proposed results.
ISSN:0020-7721
1464-5319
DOI:10.1080/002077299291679