On the influence of overlap in automatic root cause analysis in manufacturing
To improve manufacturing processes, it is essential to find the root causes of occurring problems, in order to solve them permanently. Automatic Root Cause Analysis (ARCA) solutions aid analysts in finding such root causes, by using automatic data analysis to improve the digital decision. When tryin...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2022-11, Vol.60 (21), p.6491-6507 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve manufacturing processes, it is essential to find the root causes of occurring problems, in order to solve them permanently. Automatic Root Cause Analysis (ARCA) solutions aid analysts in finding such root causes, by using automatic data analysis to improve the digital decision. When trying to locate the root cause of a problem in a manufacturing process, a phenomenon can occur that disrupts the application of ARCA solutions. Overlap, as we denominated, is a phenomenon where local synchronicities in the manufacturing process lead to data where it is impossible to discern the influence of each location in the quality of products, which impedes automated diagnosis, especially when using classifiers. This paper identifies and defines overlap, and proposes a two-phase ARCA solution that uses factor-ranking algorithms, instead of classifiers. The proposed solution is evaluated in simulated and real case-study data. Results proved the presence of overlap in the datasets, and its negative impact on classifiers. The proposed solution has a positive performance detecting root causes even in the presence of overlap. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2021.1992680 |