Closed-loop supply chain network design integrated with assembly and disassembly line balancing under uncertainty: an enhanced decomposition approach

In recent years, environmental concerns have increased the need for design and optimisation of closed-loop supply chain (CLSC) networks. Majority of the existing research papers consider the CLSC network designing and line balancing decisions separately. However, this approach may lead to sub-optima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2021-05, Vol.59 (9), p.2690-2707
Hauptverfasser: Yolmeh, Abdolmajid, Saif, Ullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, environmental concerns have increased the need for design and optimisation of closed-loop supply chain (CLSC) networks. Majority of the existing research papers consider the CLSC network designing and line balancing decisions separately. However, this approach may lead to sub-optimal designs due to the interdependency of these decisions. To this end, this paper investigates a CLSC network designing problem integrated with assembly and disassembly line balancing under demand and return uncertainty. The proposed CLSC network contains manufacturers, remanufacturers, assembly centres, intermediate centres (where disassembly lines are located), and customer centres. A new mixed integer non-linear programming model for the proposed problem is developed. Furthermore, an enhanced decomposition approach is developed to solve the proposed model. Computational results, based on randomly generated problem instances, show the efficiency of proposed enhanced decomposition approach. Specifically, results shows that the proposed enhanced decomposition approach leads to significantly smaller running times in comparison with an existing decomposition approach. Results also highlight the importance of integrating supply chain network designing and line balancing decisions.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2020.1736723