Robust material requirement planning with cumulative demand under uncertainty

In this paper, we deal with the problem of tactical capacitated production planning with the demand under uncertainty modelled by closed intervals. We propose a single-item with backordering model under small uncertainty in the cumulative demand for the Master Production Scheduling (MPS) problem wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2017-11, Vol.55 (22), p.6824-6845
Hauptverfasser: Guillaume, Romain, Thierry, Caroline, Zieliński, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deal with the problem of tactical capacitated production planning with the demand under uncertainty modelled by closed intervals. We propose a single-item with backordering model under small uncertainty in the cumulative demand for the Master Production Scheduling (MPS) problem with different rules, namely the Lot For Lot rule and the Periodic Order Quantity rule. Then we study a general multilevel, multi-item, multi-resource model with backordering and the external demand on components for the Material Requirement Planning (MRP) problem under uncertainty in the cumulative demand. In order to choose robust production plans for the above problems that hedge against uncertainty, we adopt the well-known minmax criterion. We propose polynomial methods for evaluating the impact of uncertainty on a given production plan in terms of its cost and for computing optimal robust production plans for both problems (MPS/MRP) under the assumed interval uncertainty representation. We show in this way that the robust problems (MPS/MRP) under this uncertainty representation are not much computationally harder than their deterministic counterparts.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2017.1353157