Lebesgue integral defined in the manner of Riemann
It is shown that the Lebesgue integral of abounded real-valued function on abounded real closed interval can be defined following the classical definition of Riemann (and Darboux) by partitioning the domain of f into finitely many pairwise disjoint, however, measurable (and not necessarily interval)...
Gespeichert in:
Veröffentlicht in: | International journal of mathematical education in science and technology 1999-02, Vol.30 (1), p.127-130 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the Lebesgue integral of abounded real-valued function on abounded real closed interval can be defined following the classical definition of Riemann (and Darboux) by partitioning the domain of f into finitely many pairwise disjoint, however, measurable (and not necessarily interval) parts. |
---|---|
ISSN: | 0020-739X 1464-5211 |
DOI: | 10.1080/002073999288175 |