Neural-net-based direct self-tuning control of nonlinear plants

Use of neural networks for direct self-tuning control of stochastic nonlinear plants has been proposed. The control is based upon inverse modelling of a pseudo-plant. The input to the pseudo-plant is same as the plant input while its output consists of a linear combination of the plant input and out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control 1997-01, Vol.66 (1), p.85-104
Hauptverfasser: Ahmed, M. S., Anjum, M. Farooq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Use of neural networks for direct self-tuning control of stochastic nonlinear plants has been proposed. The control is based upon inverse modelling of a pseudo-plant. The input to the pseudo-plant is same as the plant input while its output consists of a linear combination of the plant input and output. The controller is directly identified as a mean square optimal inverse estimator of the pseudo-plant. This approach allows the control of inverse unstable plants. Local convergence properties as well as results of simulation studies are presented.
ISSN:0020-7179
1366-5820
DOI:10.1080/002071797224838