Vestibulo-ocular reflex characteristics during unidirectional translational whole-body vibration without head restriction

The vestibulo-ocular reflex (VOR) plays a crucial role in ocular stability. However, VOR characteristics under realistic whole-body vibration conditions, particularly without head restriction, remain unclear. The aim of this study was to characterise the VOR over a wide range of whole-body vibration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergonomics 2020-01, Vol.63 (1), p.91-100
Hauptverfasser: Sugawara, Tomoko, Sakai, Hiroyuki, Hirata, Yutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vestibulo-ocular reflex (VOR) plays a crucial role in ocular stability. However, VOR characteristics under realistic whole-body vibration conditions, particularly without head restriction, remain unclear. The aim of this study was to characterise the VOR over a wide range of whole-body vibration frequencies (0.7-10 Hz), such as occur when driving a car. Eye and head movements were measured in response to unidirectional translational whole-body vibration that resembled actual vehicle vibrations. The VOR was then modelled by regressing eye velocity data on multiple head movement components. Results showed that the VOR was explained by angular velocity, linear acceleration, and linear jerk components of the head movements. Because the VOR in response to head linear-jerk components disrupted ocular stability in the current experimental setup, our results suggest that degraded vision in whole-body vibratory environments might be partially attributable to jerky head movements. Practitioner summary: The vestibulo-ocular reflex (VOR) during unidirectional translational whole-body vibration without head restriction was modelled using multiple head movement components, with the aim of characterising the VOR. Results showed that the VOR was explained by angular velocity, linear acceleration, and linear jerk components of head movements.
ISSN:0014-0139
1366-5847
DOI:10.1080/00140139.2019.1683616