The Effect of Fuel and Operating Variables on Hydrocarbon Species Distributions in the Exhaust from a Multicylinder Engine
Measurements of the concentrations of individual exhaust hydrocarbon species have been made as a function of engine operating variables (φ, rpm, EGR, spark timing, and coolant temperature) in a 2·3-liter four-cylinder engine. Three fuels were used in these experiments: propane, isooctane (2,2,4-trim...
Gespeichert in:
Veröffentlicht in: | Combustion science and technology 1983-07, Vol.32 (5-6), p.245-265 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurements of the concentrations of individual exhaust hydrocarbon species have been made as a function of engine operating variables (φ, rpm, EGR, spark timing, and coolant temperature) in a 2·3-liter four-cylinder engine. Three fuels were used in these experiments: propane, isooctane (2,2,4-trimethylpentane), and an unleaded gasoline (indolene clear). The results show that a change in operating variable can change not only the total hydrocarbon concentration but also the distribution of species in the exhaust. All three fuels show similar trends when an operating variable is changed. Fuel-air equivalence ratio is a critical parameter in controlling exhaust hydrocarbon emissions. Beginning near stoichiometric, the total hydrocarbon concentration and the percentage contributions of methane and acetylene to the exhaust increase as the mixture becomes richer. These species contribute less than 2 percent to the total hydrocarbon emissions at |
---|---|
ISSN: | 0010-2202 1563-521X |
DOI: | 10.1080/00102208308923660 |