Automobile indexation from 3D point clouds of urban scenarios

In this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatika 2021-10, Vol.62 (3-4), p.311-318
Hauptverfasser: Alfonso, Ramirez-Pedraza, José-Joel, González-Barbosa, Raymundo, Ramirez-Pedraza, Erick-Alejandro, González-Barbosa, Juan-Bautista, Hurtado-Ramos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robust principal component analysis (RPCA), and finally, (3) unstructured objects model and indexing. The dataset is partitioned into training with 4500 objects and test with 3000 objects. Mean Shift thresholds, the filter, the Delaunay parameters, and the histogram modelling are optimized via ROC analysis. It is observed that the car scan quality affects our method to a lesser degree when compared with state-of-the-art methods.
ISSN:0005-1144
1848-3380
DOI:10.1080/00051144.2021.1947609