A Property of Geometric Mean Regression
This article gives an overview of four classical regressions: regression of Y on X, regression of X on Y, orthogonal regression, and geometric mean regression. It also compares two general parametric families that unify all four regressions: Deming's parametric family and Roos' parametric...
Gespeichert in:
Veröffentlicht in: | The American statistician 2014-10, Vol.68 (4), p.277-281 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article gives an overview of four classical regressions: regression of Y on X, regression of X on Y, orthogonal regression, and geometric mean regression. It also compares two general parametric families that unify all four regressions: Deming's parametric family and Roos' parametric family. It is shown that Roos regression can be done by minimizing the sum of squared α-distance, and as a special case, geometric mean regression can be obtained by minimizing the sum of squared adjusted distances between the sample points and an imaginary line. |
---|---|
ISSN: | 0003-1305 1537-2731 |
DOI: | 10.1080/00031305.2014.962763 |