A Gauche Perspective on Row Reduced Echelon Form and Its Uniqueness

Using a left-to-right "sweeping" algorithm, we define the Gauche basis for the column space of a matrix M. Interpreting the row reduced echelon form (RREF) of M by Gauche means gives a direct proof of its uniqueness. A corollary shows that the (right) null space of M determines its row equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2022-04, Vol.129 (4), p.364-373
1. Verfasser: Grinberg, Eric L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a left-to-right "sweeping" algorithm, we define the Gauche basis for the column space of a matrix M. Interpreting the row reduced echelon form (RREF) of M by Gauche means gives a direct proof of its uniqueness. A corollary shows that the (right) null space of M determines its row equivalence class, unmasks a sanitized version of the assertion "if two systems are solution equivalent they are row equivalent," and presents the null space as a distinguished graph. We conclude with pedagogical reflections.
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2022.2027717