Why Is Pi Less Than Twice Phi?
We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conc...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2018-09, Vol.125 (8), p.715-723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 8 |
container_start_page | 715 |
container_title | The American mathematical monthly |
container_volume | 125 |
creator | Morales, Alejandro H. Pak, Igor Panova, Greta |
description | We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems. |
doi_str_mv | 10.1080/00029890.2018.1496757 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00029890_2018_1496757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48661882</jstor_id><sourcerecordid>48661882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRMFZ_QiXgOvHOI_NYqZSqhYJdVFwOk3RCE9pMnUkp-fcmpLp0de_lnHMPfAhNMaQYJDwCAFFSQUoAyxQzxUUmLlCEFYUElCCXKBo8yWC6Rjch1P0JGSMRuv_advEixKsqXtoQ4vXWNPH6VBU2Xm2rp1t0VZpdsHfnOUGfr_P17D1ZfrwtZi_LpKAc2qTkLFc5GEGBW8GYFEIZbqwgJod-zzZkw4UopIWMmhxTQ5ik1FIFOckVpRP0MP49ePd9tKHVtTv6pq_UBGeUE8wI9K5sdBXeheBtqQ--2hvfaQx6QKF_UegBhT6j6HPTMVeH1vm_EJOcYylJrz-PetWUzu_NyfndRrem2zlfetMUVdD0_4ofdQpqVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153621420</pqid></control><display><type>article</type><title>Why Is Pi Less Than Twice Phi?</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Morales, Alejandro H. ; Pak, Igor ; Panova, Greta</creator><creatorcontrib>Morales, Alejandro H. ; Pak, Igor ; Panova, Greta</creatorcontrib><description>We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2018.1496757</identifier><language>eng</language><publisher>Washington: Taylor & Francis</publisher><subject>Asymptotic methods ; Combinatorial analysis ; Combinatorics ; Fibonacci numbers ; Linear equations ; Numbers ; Primary 05A20 ; Proof theory ; Secondary 05A05 ; Set theory</subject><ispartof>The American mathematical monthly, 2018-09, Vol.125 (8), p.715-723</ispartof><rights>2018 Mathematical Association of America 2018</rights><rights>Copyright Taylor & Francis Ltd. Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</citedby><cites>FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48661882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48661882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Morales, Alejandro H.</creatorcontrib><creatorcontrib>Pak, Igor</creatorcontrib><creatorcontrib>Panova, Greta</creatorcontrib><title>Why Is Pi Less Than Twice Phi?</title><title>The American mathematical monthly</title><description>We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.</description><subject>Asymptotic methods</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Fibonacci numbers</subject><subject>Linear equations</subject><subject>Numbers</subject><subject>Primary 05A20</subject><subject>Proof theory</subject><subject>Secondary 05A05</subject><subject>Set theory</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRMFZ_QiXgOvHOI_NYqZSqhYJdVFwOk3RCE9pMnUkp-fcmpLp0de_lnHMPfAhNMaQYJDwCAFFSQUoAyxQzxUUmLlCEFYUElCCXKBo8yWC6Rjch1P0JGSMRuv_advEixKsqXtoQ4vXWNPH6VBU2Xm2rp1t0VZpdsHfnOUGfr_P17D1ZfrwtZi_LpKAc2qTkLFc5GEGBW8GYFEIZbqwgJod-zzZkw4UopIWMmhxTQ5ik1FIFOckVpRP0MP49ePd9tKHVtTv6pq_UBGeUE8wI9K5sdBXeheBtqQ--2hvfaQx6QKF_UegBhT6j6HPTMVeH1vm_EJOcYylJrz-PetWUzu_NyfndRrem2zlfetMUVdD0_4ofdQpqVg</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Morales, Alejandro H.</creator><creator>Pak, Igor</creator><creator>Panova, Greta</creator><general>Taylor & Francis</general><general>Taylor & Francis, Ltd</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20180914</creationdate><title>Why Is Pi Less Than Twice Phi?</title><author>Morales, Alejandro H. ; Pak, Igor ; Panova, Greta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Fibonacci numbers</topic><topic>Linear equations</topic><topic>Numbers</topic><topic>Primary 05A20</topic><topic>Proof theory</topic><topic>Secondary 05A05</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Alejandro H.</creatorcontrib><creatorcontrib>Pak, Igor</creatorcontrib><creatorcontrib>Panova, Greta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Alejandro H.</au><au>Pak, Igor</au><au>Panova, Greta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Is Pi Less Than Twice Phi?</atitle><jtitle>The American mathematical monthly</jtitle><date>2018-09-14</date><risdate>2018</risdate><volume>125</volume><issue>8</issue><spage>715</spage><epage>723</epage><pages>715-723</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.</abstract><cop>Washington</cop><pub>Taylor & Francis</pub><doi>10.1080/00029890.2018.1496757</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2018-09, Vol.125 (8), p.715-723 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00029890_2018_1496757 |
source | JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Asymptotic methods Combinatorial analysis Combinatorics Fibonacci numbers Linear equations Numbers Primary 05A20 Proof theory Secondary 05A05 Set theory |
title | Why Is Pi Less Than Twice Phi? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Is%20Pi%20Less%20Than%20Twice%20Phi?&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Morales,%20Alejandro%20H.&rft.date=2018-09-14&rft.volume=125&rft.issue=8&rft.spage=715&rft.epage=723&rft.pages=715-723&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2018.1496757&rft_dat=%3Cjstor_cross%3E48661882%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153621420&rft_id=info:pmid/&rft_jstor_id=48661882&rfr_iscdi=true |