Why Is Pi Less Than Twice Phi?

We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2018-09, Vol.125 (8), p.715-723
Hauptverfasser: Morales, Alejandro H., Pak, Igor, Panova, Greta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 723
container_issue 8
container_start_page 715
container_title The American mathematical monthly
container_volume 125
creator Morales, Alejandro H.
Pak, Igor
Panova, Greta
description We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.
doi_str_mv 10.1080/00029890.2018.1496757
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00029890_2018_1496757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48661882</jstor_id><sourcerecordid>48661882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRMFZ_QiXgOvHOI_NYqZSqhYJdVFwOk3RCE9pMnUkp-fcmpLp0de_lnHMPfAhNMaQYJDwCAFFSQUoAyxQzxUUmLlCEFYUElCCXKBo8yWC6Rjch1P0JGSMRuv_advEixKsqXtoQ4vXWNPH6VBU2Xm2rp1t0VZpdsHfnOUGfr_P17D1ZfrwtZi_LpKAc2qTkLFc5GEGBW8GYFEIZbqwgJod-zzZkw4UopIWMmhxTQ5ik1FIFOckVpRP0MP49ePd9tKHVtTv6pq_UBGeUE8wI9K5sdBXeheBtqQ--2hvfaQx6QKF_UegBhT6j6HPTMVeH1vm_EJOcYylJrz-PetWUzu_NyfndRrem2zlfetMUVdD0_4ofdQpqVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153621420</pqid></control><display><type>article</type><title>Why Is Pi Less Than Twice Phi?</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Morales, Alejandro H. ; Pak, Igor ; Panova, Greta</creator><creatorcontrib>Morales, Alejandro H. ; Pak, Igor ; Panova, Greta</creatorcontrib><description>We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2018.1496757</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis</publisher><subject>Asymptotic methods ; Combinatorial analysis ; Combinatorics ; Fibonacci numbers ; Linear equations ; Numbers ; Primary 05A20 ; Proof theory ; Secondary 05A05 ; Set theory</subject><ispartof>The American mathematical monthly, 2018-09, Vol.125 (8), p.715-723</ispartof><rights>2018 Mathematical Association of America 2018</rights><rights>Copyright Taylor &amp; Francis Ltd. Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</citedby><cites>FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48661882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48661882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Morales, Alejandro H.</creatorcontrib><creatorcontrib>Pak, Igor</creatorcontrib><creatorcontrib>Panova, Greta</creatorcontrib><title>Why Is Pi Less Than Twice Phi?</title><title>The American mathematical monthly</title><description>We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.</description><subject>Asymptotic methods</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Fibonacci numbers</subject><subject>Linear equations</subject><subject>Numbers</subject><subject>Primary 05A20</subject><subject>Proof theory</subject><subject>Secondary 05A05</subject><subject>Set theory</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRMFZ_QiXgOvHOI_NYqZSqhYJdVFwOk3RCE9pMnUkp-fcmpLp0de_lnHMPfAhNMaQYJDwCAFFSQUoAyxQzxUUmLlCEFYUElCCXKBo8yWC6Rjch1P0JGSMRuv_advEixKsqXtoQ4vXWNPH6VBU2Xm2rp1t0VZpdsHfnOUGfr_P17D1ZfrwtZi_LpKAc2qTkLFc5GEGBW8GYFEIZbqwgJod-zzZkw4UopIWMmhxTQ5ik1FIFOckVpRP0MP49ePd9tKHVtTv6pq_UBGeUE8wI9K5sdBXeheBtqQ--2hvfaQx6QKF_UegBhT6j6HPTMVeH1vm_EJOcYylJrz-PetWUzu_NyfndRrem2zlfetMUVdD0_4ofdQpqVg</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Morales, Alejandro H.</creator><creator>Pak, Igor</creator><creator>Panova, Greta</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis, Ltd</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20180914</creationdate><title>Why Is Pi Less Than Twice Phi?</title><author>Morales, Alejandro H. ; Pak, Igor ; Panova, Greta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f64b9b0a7306e7448779a6ae72ab07795d2d677c8e053ab13a24833e390b2b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Fibonacci numbers</topic><topic>Linear equations</topic><topic>Numbers</topic><topic>Primary 05A20</topic><topic>Proof theory</topic><topic>Secondary 05A05</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Alejandro H.</creatorcontrib><creatorcontrib>Pak, Igor</creatorcontrib><creatorcontrib>Panova, Greta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Alejandro H.</au><au>Pak, Igor</au><au>Panova, Greta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Is Pi Less Than Twice Phi?</atitle><jtitle>The American mathematical monthly</jtitle><date>2018-09-14</date><risdate>2018</risdate><volume>125</volume><issue>8</issue><spage>715</spage><epage>723</epage><pages>715-723</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00029890.2018.1496757</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2018-09, Vol.125 (8), p.715-723
issn 0002-9890
1930-0972
language eng
recordid cdi_crossref_primary_10_1080_00029890_2018_1496757
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Asymptotic methods
Combinatorial analysis
Combinatorics
Fibonacci numbers
Linear equations
Numbers
Primary 05A20
Proof theory
Secondary 05A05
Set theory
title Why Is Pi Less Than Twice Phi?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Is%20Pi%20Less%20Than%20Twice%20Phi?&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Morales,%20Alejandro%20H.&rft.date=2018-09-14&rft.volume=125&rft.issue=8&rft.spage=715&rft.epage=723&rft.pages=715-723&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2018.1496757&rft_dat=%3Cjstor_cross%3E48661882%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153621420&rft_id=info:pmid/&rft_jstor_id=48661882&rfr_iscdi=true