Why Is Pi Less Than Twice Phi?
We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conc...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2018-09, Vol.125 (8), p.715-723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko's theorem on the number of linear extensions of a partially ordered set and its complement. We conclude with some open problems. |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.1080/00029890.2018.1496757 |