miR-200a-3p represses osteogenesis of human periodontal ligament stem cells by targeting ZEB2 and activating the NF-κB pathway
Human periodontal ligament stem cells (hPDLSCs) bear multilineage differentiation potential and represent the cytological basis of periodontal tissue regeneration. microRNA (miR) is accepted as a critical regulator of cell differentiation. This study explored the molecular mechanism of miR-200a-3p i...
Gespeichert in:
Veröffentlicht in: | Acta odontologica Scandinavica 2022-02, Vol.80 (2), p.140-149 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human periodontal ligament stem cells (hPDLSCs) bear multilineage differentiation potential and represent the cytological basis of periodontal tissue regeneration. microRNA (miR) is accepted as a critical regulator of cell differentiation. This study explored the molecular mechanism of miR-200a-3p in osteogenesis of hPDLSCs.
hPDLSCs were cultured and identified in vitro. miR-200a-3p expression during osteogenic differentiation of hPDLSCs was detected. hPDLSCs were transfected with miR-200a-3p mimic or miR-200a-3p inhibitor. Alkaline phosphatase (ALP) activity, calcified nodules and osteogenesis-related genes of hPDLSCs were measured. The binding relationship between miR-200a-3p and ZEB2 was predicted and verified. hPDLSCs were infected with sh-ZEB2, and then the osteogenic capacity was examined. miR-200a-3p inhibitor-transfected hPDLSCs were infected with sh-ZEB2. The key proteins of the NF-κB pathway were measured.
miR-200a-3p expression was downregulated during osteogenic differentiation of hPDLSCs. Upregulation of miR-200a-3p reduced ALP activity, calcified nodules and osteogenesis-related genes of hPDLSCs, while downregulation of miR-200a-3p facilitated the osteogenesis of hPDLSCs. miR-200a-3p targeted ZEB2. ZEB2 silencing repressed osteogenesis of hPDLSCs. ZEB2 silencing attenuated the promoting effect of miR-200a-3p inhibitor on osteogenesis of hPDLSCs. miR-200a-3p activated the NF-κB pathway by targeting ZEB2.
miR-200a-3p repressed osteogenesis of hPDLSCs by targeting ZEB2 and activating the NF-κB pathway. This study may offer insights for periodontal tissue regeneration engineering. |
---|---|
ISSN: | 0001-6357 1502-3850 |
DOI: | 10.1080/00016357.2021.1964593 |