Cadmium lets increase the glutathione pool in bryophytes
Glutathione (GSH) plays an important role in protecting plants from environmental stresses like oxidative stress and xenobiotics. Glutathione-derived peptides are involved in heavy metal detoxification in plants and fungi. Terrestrial and aquatic bryophytes were investigated for their biochemical re...
Gespeichert in:
Veröffentlicht in: | Journal of plant physiology 2001, Vol.158 (1), p.79-89 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glutathione (GSH) plays an important role in protecting plants from environmental stresses like oxidative stress and xenobiotics. Glutathione-derived peptides are involved in heavy metal detoxification in plants and fungi. Terrestrial and aquatic bryophytes were investigated for their biochemical response to heavy metals. The GSH pool increased significantly in the first two days after supply of 100 μmol/L Cd(II). PCs were not detected. Cd(II) also induced the enhancement of the GSH pool in the water moss
Fontinalis antipyretica. Cysteine and γ-glutamyl-cysteine also increased during Cd(II) treatment, but remained on a lower level. Uptake experiments with Cd(II) showed a fast regulation of equilibrium between the Cd(II) content of the medium and the plant surface, followed by a slow migration of Cd(II) to intracellular sites. The main storage compartment of heavy metals in
Fontinalis are the vacuoles, where they are precipitated as phosphates. In the cytoplasm, the S-content increased during Cd(II) exposition. EEL-spectra indicate that in the cytoplasm, Cd(II) is chelated by SH-groups. All findings support the idea that in the investigated moss species, GSH plays an essential role in heavy metal detoxification during the transport of the metals through the cytoplasm. |
---|---|
ISSN: | 0176-1617 1618-1328 |
DOI: | 10.1078/0176-1617-00071 |