Interaction of Adipocyte Fatty Acid-binding Protein (AFABP) and JAK2

Adipocyte fatty acid-binding protein (AFABP/aP2) facilitates the intracellular solubilization and trafficking of lipids within the aqueous environment of the cell. Studies in the AFABP/aP2 knock-out mouse suggest that the protein may have roles in cellular processes broader than lipid transport. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-05, Vol.284 (20), p.13473-13480
Hauptverfasser: Thompson, Brian R., Mazurkiewicz-Muñoz, Anna M., Suttles, Jill, Carter-Su, Christin, Bernlohr, David A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adipocyte fatty acid-binding protein (AFABP/aP2) facilitates the intracellular solubilization and trafficking of lipids within the aqueous environment of the cell. Studies in the AFABP/aP2 knock-out mouse suggest that the protein may have roles in cellular processes broader than lipid transport. We present herein the finding that AFABP/aP2 interacts with JAK2 in a fatty acid-dependent manner. This interaction was established using yeast two-hybrid analysis, co-immunoprecipitation from adipose tissue, and 3T3-L1 adipocytes as well as in 293 cells overexpressing JAK2 and AFABP/aP2. Mutational analysis of AFABP/aP2 (R126L/Y128F) revealed that fatty acid binding activity is necessary for the interaction and that Asp18 of the helix-turn-helix motif forms a component of the interaction domain. Mutational analysis of JAK2 (Y1007F/Y1008F) revealed that AFABP/aP2 associates with the basal unphosphorylated form of the protein. Interleukin-6, but not interleukin-10, stimulated phosphorylation of STAT3, and induction of SOCS3 mRNA expression were potentiated in a time- and dose-dependent manner in macrophage cell lines derived from AFABP/aP2-EFABP/mal1 double knock-out mice relative to cells from wild type animals. These results suggest that ligand-bound AFABP/aP2 binds to and attenuates JAK2 signaling and establishes a new role for AFABP/aP2 as a fatty acid sensor affecting cellular metabolism via protein-protein interactions.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M900075200