Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway
Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-01, Vol.284 (3), p.1612-1619 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation and inhibition of GSK3β,β-catenin was released from a GSK3β/β-catenin complex, with subsequent nuclear translocation. Methyl-β-cyclodextrin (MCD) and phosphatidylinositol-specific phospholipase C (PI-PLC), but not 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and bafilomycin A1, inhibited VacA-induced phosphorylation of Akt, indicating that it does not require VacA internalization and is independent of vacuolation. VacA treatment of AZ-521 cells transfected with TOPtkLuciferase reporter plasmid or control FOPtkLucifease reporter plasmid resulted in activation of TOPtkLuciferase, but not FOPtkLucifease. In addition, VacA transactivated the β-catenin-dependent cyclin D1 promoter in a luciferase reporter assay. Infection of AZ-521 cells by a vacA mutant strain of H. pylori failed to induce phosphorylation of Akt and GSK3β, or release of β-catenin from a GSK3β/β-catenin complex. Taken together, these results support the conclusion that VacA activates the PI3K/Akt signaling pathway, resulting in phosphorylation and inhibition of GSK3β, and subsequent translocation ofβ-catenin to the nucleus, consistent with effects of VacA on β-catenin-regulated transcriptional activity. These data introduce the possibility that Wnt-dependent signaling might play a role in the pathogenesis of H. pylori infection, including the development of gastric cancer. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M806981200 |