Actin S-Nitrosylation Inhibits Neutrophil β2 Integrin Function
The focus of this work was to elucidate the mechanism for inhibition of neutrophil β2 integrin adhesion molecules by hyperoxia. Results demonstrate that exposure to high oxygen partial pressures increases synthesis of reactive species derived from type 2 nitric-oxide synthase and myeloperoxidase, le...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2008-04, Vol.283 (16), p.10822-10834 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The focus of this work was to elucidate the mechanism for inhibition of neutrophil β2 integrin adhesion molecules by hyperoxia. Results demonstrate that exposure to high oxygen partial pressures increases synthesis of reactive species derived from type 2 nitric-oxide synthase and myeloperoxidase, leading to excessive S-nitrosylation of β-actin and possibly profilin. Hyperoxia causes S-nitrosylation of the four cysteine moieties closest to the carboxyl-terminal end of actin, which results in formation of short actin filaments. This alters actin polymerization, network formation, and intracellular distribution, as well as inhibits β2 integrin clustering. If neutrophils are exposed to ultraviolet light to reverse S-nitrosylation, or are incubated with N-formyl-methionyl-leucine-phenylalanine to trigger “inside-out” activation, the effects of hyperoxia are reversed. We conclude that cytoskeletal changes triggered by hyperoxia inhibit β2 integrin-dependent neutrophil adhesion. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M709200200 |