Orphan G Protein-coupled Receptor GPR56 Regulates Neural Progenitor Cell Migration via a Gα12/13 and Rho Pathway

In the developing forebrain, the migration and positioning of neural progenitor cells (NPCs) are regulated coordinately by various molecules. Mutation of these molecules, therefore, causes cortical malformation. GPR56 has been reported as a cortical malformation-related gene that is mutated in patie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-05, Vol.283 (21), p.14469-14478
Hauptverfasser: Iguchi, Tokuichi, Sakata, Kensei, Yoshizaki, Kotaro, Tago, Kenji, Mizuno, Norikazu, Itoh, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the developing forebrain, the migration and positioning of neural progenitor cells (NPCs) are regulated coordinately by various molecules. Mutation of these molecules, therefore, causes cortical malformation. GPR56 has been reported as a cortical malformation-related gene that is mutated in patients with bilateral frontoparietal polymicrogyria. GPR56 encodes an orphan G protein-coupled receptor, and its mutations reduce the cell surface expression. It has also been reported that the expression level of GPR56 is involved in cancer cell adhesion and metastasis. However, it remains to be clarified how GPR56 functions in brain development and which signaling pathways are activated by GPR56. In this study, we showed that GPR56 is highly expressed in NPCs and has the ability to inhibit NPC migration. We found that GPR56 coupled with Gα12/13 and induced Rho-dependent activation of the transcription mediated through a serum-responsive element and NF-κB-responsive element and actin fiber reorganization. The transcriptional activation and actin reorganization were inhibited by an RGS domain of the p115 Rho-specific guanine nucleotide exchange factor (p115 RhoGEF RGS) and dominant negative form of Rho. Moreover, we have demonstrated that a functional anti-GPR56 antibody, which has an agonistic activity, inhibited NPC migration. This inhibition was attenuated by p115 RhoGEF RGS, C3 exoenzyme, and GPR56 knockdown. These results indicate that GPR56 participates in the regulation of NPC movement through the Gα12/13 and Rho signaling pathway, suggesting its important role in the development of the central nervous system.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M708919200