Generation of Aβ38 and Aβ42 Is Independently and Differentially Affected by Familial Alzheimer Disease-associated Presenilin Mutations and γ-Secretase Modulation

Alzheimer disease amyloid β-peptide (Aβ) is generated via proteolytic processing of the β-amyloid precursor protein by β- and γ-secretase. γ-Secretase can be blocked by selective inhibitors but can also be modulated by a subset of non-steroidal anti-inflammatory drugs, including sulindac sulfide. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-01, Vol.283 (2), p.677-683
Hauptverfasser: Page, Richard M., Baumann, Karlheinz, Tomioka, Masanori, Pérez-Revuelta, Blanca I., Fukumori, Akio, Jacobsen, Helmut, Flohr, Alexander, Luebbers, Thomas, Ozmen, Laurence, Steiner, Harald, Haass, Christian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer disease amyloid β-peptide (Aβ) is generated via proteolytic processing of the β-amyloid precursor protein by β- and γ-secretase. γ-Secretase can be blocked by selective inhibitors but can also be modulated by a subset of non-steroidal anti-inflammatory drugs, including sulindac sulfide. These drugs selectively reduce the generation of the aggregation-prone 42-amino acid Aβ42 and concomitantly increase the levels of the rather benign Aβ38. Here we show that Aβ42 and Aβ38 generation occur independently from each other. The amount of Aβ42 produced by cells expressing 10 different familial Alzheimer disease (FAD)-associated mutations in presenilin (PS) 1, the catalytic subunit of γ-secretase, appeared to correlate with the respective age of onset in patients. However, Aβ38 levels did not show a negative correlation with the age of onset. Modulation of γ-secretase activity by sulindac sulfide reduced Aβ42 in the case of wild type PS1 and two FAD-associated PS1 mutations (M146L and A285V). The remaining eight PS1 FAD mutants showed either no reduction of Aβ42 or only rather subtle effects. Strikingly, even the mutations that showed no effect on Aβ42 levels allowed a robust increase of Aβ38 upon treatment with sulindac sulfide. Similar observations were made for fenofibrate, a compound known to increase Aβ42 and to decrease Aβ38. For mutants that predominantly produce Aβ42, the ability of fenofibrate to further increase Aβ42 levels became diminished, whereas Aβ38 levels were altered to varying extents for all mutants analyzed. Thus, we conclude that Aβ38 and Aβ42 production do not depend on each other. Using an independent non-steroidal anti-inflammatory drug derivative, we obtained similar results for PS1 as well as for PS2. These in vitro results were confirmed by in vivo experiments in transgenic mice expressing the PS2 N141I FAD mutant. Our findings therefore have strong implications on the selection of transgenic mouse models used for screening of the Aβ42-lowering capacity of γ-secretase modulators. Furthermore, human patients with certain PS mutations may not respond to γ-secretase modulators.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M708754200