Characterization of the NuoM (ND4) Subunit in Escherichia coli NDH-1

The proton-translocating NADH-quinone (Q) oxidoreductase (NDH-1) from Escherichia coli is composed of two segments: a peripheral arm and a membrane arm. The membrane arm contains 7 hydrophobic subunits. Of these subunits, NuoM, a homolog of the mitochondrial ND4 subunit, is proposed to be involved i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2007-12, Vol.282 (51), p.36914-36922
Hauptverfasser: Torres-Bacete, Jesus, Nakamaru-Ogiso, Eiko, Matsuno-Yagi, Akemi, Yagi, Takao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proton-translocating NADH-quinone (Q) oxidoreductase (NDH-1) from Escherichia coli is composed of two segments: a peripheral arm and a membrane arm. The membrane arm contains 7 hydrophobic subunits. Of these subunits, NuoM, a homolog of the mitochondrial ND4 subunit, is proposed to be involved in proton translocation and Q-binding. Therefore, we conducted site-directed mutation of 15 amino acid residues of NuoM and investigated their properties. In all mutants, the assembly of the whole enzyme seemed intact. Mutation of highly conserved Glu144 and Lys234 leads to almost total elimination of energy-transducing NDH-1 activities as well as increased production of superoxide radicals. Their NADH dehydrogenase activities were almost normal. Because these two residues are predicted to be located in the transmembrane segments of NuoM, the results strongly suggest that they participate in proton translocation. Although it is hypothesized that His interacts with a Q head group, mutations at four His moderately inhibited NDH-1 activities and had almost no effect on the Km values for Q or IC50 values of capsaicin-40, a competitive inhibitor for the Q binding site. The data suggest that these His are not involved in the catalytic Q-binding. Functional roles of NuoM and advantages of NDH-1 research as a model for mitochondrial complex I study have been discussed.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M707855200