Chronic Ethanol and Triglyceride Turnover in White Adipose Tissue in Rats

Chronic ethanol consumption disrupts whole-body lipid metabolism. Here we tested the hypothesis that regulation of triglyceride homeostasis in adipose tissue is vulnerable to long-term ethanol exposure. After chronic ethanol feeding, total body fat content as well as the quantity of epididymal adipo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2007-09, Vol.282 (39), p.28465-28473
Hauptverfasser: Kang, Li, Chen, Xiaocong, Sebastian, Becky M., Pratt, Brian T., Bederman, Ilya R., Alexander, James C., Previs, Stephen F., Nagy, Laura E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic ethanol consumption disrupts whole-body lipid metabolism. Here we tested the hypothesis that regulation of triglyceride homeostasis in adipose tissue is vulnerable to long-term ethanol exposure. After chronic ethanol feeding, total body fat content as well as the quantity of epididymal adipose tissue of male Wistar rats was decreased compared with pair-fed controls. Integrated rates of in vivo triglyceride turnover in epididymal adipose tissue were measured using 2H2O as a tracer. Triglyceride turnover in adipose tissue was increased due to a 2.3-fold increase in triglyceride degradation in ethanol-fed rats compared with pair-fed controls with no effect of ethanol on triglyceride synthesis. Because increased lipolysis accompanied by the release of free fatty acids into the circulation is associated with insulin resistance and liver injury, we focused on determining the mechanisms for increased lipolysis in adipose tissue after chronic ethanol feeding. Chronic ethanol feeding suppressed β-adrenergic receptor-stimulated lipolysis in both in vivo and ex vivo assays; thus, enhanced triglyceride degradation during ethanol feeding was not due to increased β-adrenergic-mediated lipolysis. Instead, chronic ethanol feeding markedly impaired insulin-mediated suppression of lipolysis in conscious rats during a hyperinsulinemic-euglycemic clamp as well as in adipocytes isolated from epididymal and subcutaneous adipose tissue. These data demonstrate for the first time that chronic ethanol feeding increased the rate of triglyceride degradation in adipose tissue. Furthermore, this enhanced rate of lipolysis was due to a suppression of the anti-lipolytic effects of insulin in adipocytes after chronic ethanol feeding.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M705503200