Localization of an NH2-terminal Disease-causing Mutation Hot Spot to the “Clamp” Region in the Three-dimensional Structure of the Cardiac Ryanodine Receptor
A region between residues 414 and 466 in the cardiac ryanodine receptor (RyR2) harbors more than half of the known NH2-terminal mutations associated with cardiac arrhythmias and sudden death. To gain insight into the structural basis of this NH2-terminal mutation hot spot, we have determined its loc...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2007-06, Vol.282 (24), p.17785-17793 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A region between residues 414 and 466 in the cardiac ryanodine receptor (RyR2) harbors more than half of the known NH2-terminal mutations associated with cardiac arrhythmias and sudden death. To gain insight into the structural basis of this NH2-terminal mutation hot spot, we have determined its location in the three-dimensional structure of RyR2. Green fluorescent protein (GFP), used as a structural marker, was inserted into the middle of this mutation hot spot after Ser-437 in the RyR2 sequence. The resultant GFP-RyR2 fusion protein, RyR2S437-GFP, was expressed in HEK293 cells and characterized using Ca2+ release, [3H]ryanodine binding, and single cell Ca2+ imaging studies. These functional analyses revealed that RyR2S437-GFP forms a caffeine- and ryanodine-sensitive Ca2+ release channel that possesses Ca2+ and caffeine dependence of activation indistinguishable from that of wild type (wt) RyR2. HEK293 cells expressing RyR2S437-GFP displayed a propensity for store overload-induced Ca2+ release similar to that in cells expressing RyR2-wt. The three-dimensional structure of the purified RyR2S437-GFP was reconstructed using cryo-electron microscopy and single particle image processing. Subtraction of the three-dimensional reconstructions of RyR2-wt and RyR2S437-GFP revealed the location of the inserted GFP, and hence the NH2-terminal mutation hot spot, in a region between domains 5 and 9 in the clamp-shaped structure. This location is close to a previously mapped central disease-causing mutation site located in a region between domains 5 and 6. These results, together with findings from previous studies, suggest that the proposed interactions between the NH2-terminal and central regions of RyR2 are likely to take place between domains 5 and 6 and that the clamp-shaped structure, which shows substantial conformational differences between the closed and open states, is highly susceptible to disease-causing mutations. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M700660200 |