Trafficking and Assembly of the Cold-sensitive TRPM8 Channel
TRPM (transient receptor potential melastatin-like) channels are distinct from many other members of the transient receptor potential family in regard to their overall size (>1000 amino acids), the lack of N-terminal ankyrin-like repeats, and hydrophobicity predictions that may allow for more tha...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2006-12, Vol.281 (50), p.38396-38404 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TRPM (transient receptor potential melastatin-like) channels are distinct from many other members of the transient receptor potential family in regard to their overall size (>1000 amino acids), the lack of N-terminal ankyrin-like repeats, and hydrophobicity predictions that may allow for more than six transmembrane regions. Common to each TRPM member is a prominent C-terminal coiled coil region. Here we have shown that TRPM8 channels assemble as multimers using the putative coiled coil region within the intracellular C terminus and that this assembly can be disturbed by a single point mutation within the coiled coil region. This mutant neither gives rise to functional channels nor do its subunits interact or form protein complexes that correspond to a multimer. However, they are still transported to the plasma membrane. Furthermore, wild-type currents can be suppressed by expressing the membrane-attached C-terminal region of TRPM8. To separate assembly from trafficking, we investigated the maturation of TRPM8 protein by identifying and mutating the relevant N-linked glycosylation site and showing that glycosylation is neither essential for multimerization nor for transport to the plasma membrane per se but appears to facilitate efficient multimerization and transport. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M607756200 |